LCA (Life cycle assessment) - Recreate

ReCreate-blog-post-1.png

Tove Malmqvist Stigell, Senior Researcher and Docent, KTH Royal Institute of Technology 

A transition towards a more circular economy is currently lined up by multiple ongoing policy processes, not least within the EU Green Deal. One novel regulatory development already in effect in a few European countries is mandatory climate declarations and limit values on GHG emissions for buildings. What are these regulations and how do they connect to the re-use of precast concrete elements?

After several decades of development of LCA (Life cycle assessment) methodology for buildings aiming at guiding low-impact design in a life cycle perspective, a raised interest for building LCA has been seen during the latest years. Not least insights on the significance of embodied greenhouse gas emissions in buildings, has led to LCA-based regulations being introduced in several European countries. These require mandatory climate declarations of, so far primarily, new-build projects, and some of them also require building projects to display emissions below a set limit value. Such a climate declaration is a quantitative assessment of life-cycle related greenhouse gas emissions (GHG) of the building that the developer has to perform and hand in to the authority. Countries such as France, Sweden, Denmark and Norway already have such regulations in effect since 2022-2023. In France and Denmark limit values for these emissions are part of the regulation. Such limit values are represented by a set number of kg CO2-equivalents per floor area or per floor area and year, which can be tightened over the years to support further GHG emission reduction. Such limit values are also planned to be introduced in the coming years in Sweden and Finland. The Netherlands introduced a more comprehensive LCA-based declaration with limit value already in 2017. At EU level, the recast of the EPBD (Energy performance of buildings directive) requires a mandatory climate declaration for new-build from 2027 for buildings over 2000 m2 and from 2030 for all buildings, and similarly the EU taxonomy stipulates such a declaration from 2023 for buildings over 5000 m2. 

In the light of this type of regulatory development, the interest for developing methods to implement re-use of building components in new-build has increased much. The reason for this is that reuse of components could be one, among other strategies, to ensure low-carbon designs and to comply with tougher limit values in similar regulations. This since re-used components in general have lower environmental impact than virgin ones. To incentivize such strategies further, the Swedish regulation, as an example, makes it possible for a developer to use re-used products “for free”, that is count them as zero impact in the stipulated climate declaration. When setting up the mandatory climate declaration, the Swedish regulation requires a developer to make us of generic data from the national climate data base of Boverket unless EPD´s (environmental product declaration) exist and are used (and also verified that these products were procured to the building at stake). Reused construction products in Boverkets database are however currently allocated zero GHG emissions, thus incentivizing reused products in new building design This is naturally a simplification for to create an incentive, but since EPD´s on re-used building components are still extremely rare it would in the current situation not benefit re-use of precast concrete elements to require more detailed information on e.g the emissions of the reconditioning processes. Meanwhile, this type of information is currently built up in the ReCreate project based on the demonstrators in the project. 

A central issue of significance in the design of building LCA studies, including the method of LCA-based regulations, is the coverage of processes, that is the system boundaries for the assessments. It is often necessary to omit certain processes due to lack of data or to focus the assessments on known hot-spots. When these types of assessments now enter regulation, different countries take slightly different approaches to the choice of system boundaries which has led to discussions regarding how they then incentivize, or not,  certain low-carbon strategies such as circular solutions. For example, the Swedish regulation focus the production and construction stage impacts, that is the embodied GHG emissions of modules A1-A5, according to the European standard EN 15978. In a life cycle perspective, these emissions constitute a significant, and earlier non-regulated, hot-spot. These emissions can also be verified by the completion of a building project, compared to emissions associated with the use and end-of-life stages of buildings. Principally, one could argue that such a more narrow system boundary increase the incentives for re-use of precast concrete elements since the emissions of modules A1-A5 in contemporary construction of buildings are much dominated by the materials of the structure. If implementing more of a whole-life system boundary, as for example is planned for in Finland, the proportional impact of modules A1-A5 will be less, which might reduce the incentivizing effect of re-using building components. 

A well-known obstacle to reuse today is the difficulty, and thus the high costs, of dismantling buildings for reuse of elements and components with a viable service life left. This is a question that often comes up in connection to building LCA, with the idea that including the end-of-life (module C) and benefits and loads beyond the system boundary (module D) in the assessment system boundary would incentivize measures taken for design for re-use, including design for disassembly (DfD). However, end-of-life emissions associated with pre-cast concrete elements are much lower compared to emissions associated with the production stages (modules A1-A3) of contemporary construction in the European context, and it may thus be questioned to what extent it´s inclusion could have an incentivizing effect.  

An aim with module D is to give room for displaying future potential benefits in form of emission savings due to e.g reuse of components in new constructions, to be reported separately according to the EN 15978 standard. It should be noted that module D highlights potential future savings, the extent of which depend on the future handling of the components, which is hard to predict. The prospects for future re-use improve with DfD implemented, but the calculation of module D is not linked to whether such design strategies were implemented or not. Finally, one needs to remember that both module C and D deals with assessment of potential emissions in a distant future, thus their assessment becomes very uncertain. Normally, these assessments reflect today´s technology, but an increasing number of voices promote that decarbonization scenarios should be applied in similar long-term assessments. If so, the significance of module C and D also decrease. 

The proposed Finnish regulation is an example of a more comprehensive system boundary. It for example introduces thecarbon handprint which more or less reflect an assessment of module D to, in quantitative terms, visualize potential future benefits of re-using the components of the studied building along with other potential benefits of implemented design strategies

So to sum up, the emerging climate declaration regulations in various European countries do create new incentives to apply re-use of prefabricated concrete elements in today´s new-build. However, to for increased implementation of DfD strategies in today´s new-build for improving prospects for future re-use, these types of regulation do not provide direct and clear incentives. Instead, complementary steering mechanisms might be needed to promote DfD strategies

Resources: 

Boverket climate database in Sweden: https://www.boverket.se/sv/klimatdeklaration/klimatdatabas/  

Finnish emissions database for construction: https://co2data.fi/rakentaminen/#en   

Example of proposed ongoing regulatory development: the next steps proposed for the Swedish climate declaration regulation: https://www.boverket.se/en/start/publications/publications/2023/limit-values-for-climate-impact-from-buildings/#:~:text=Limit%20values%20can%20be%20introduced,on%20climate%20declarations%20for%20buildings  


Patrick-Teuffel.png

In this exclusive interview, we delve into the pioneering work of Patrick Teuffel, founder of CIRCULAR STRUCTURAL DESIGN, as he leads the charge in revolutionizing structural design for a circular economy. With a focus on sustainability and decarbonization, Teuffel discusses his role in the ReCreate project, shedding light on innovative approaches to integrating reclaimed precast concrete elements into new constructions. From reimagining design processes to the challenges and benefits of incorporating AI, Teuffel provides invaluable insights into shaping a more environmentally responsible future in construction.

1. Can you please introduce yourself a bit, your organization and your role in the project?

As founder of CIRCULAR STRUCTURAL DESIGN, I am strongly focused on advancing the principles of the circular economy and decarbonization within the built environment in the context of structural design. With my background as a structural engineer, I bring a strong combination of technical expertise and sustainability principles to my work. As an academic as well as professional, I am committed to revolutionizing traditional construction practices by integrating circularity and sustainability into every aspect of the design process.

In addition to my entrepreneurial pursuits, I also act as a professor specializing in Innovation and Sustainability Strategies at SRH Berlin School of Technology. In this role, I have the opportunity to impart my knowledge and passion for creating more environmentally responsible solutions to future generations of professionals. My advisory role at the DGNB (German Sustainable Building Council) Innovation Board and the circular construction team at Circular Berlin further underscores my dedication to driving meaningful change within the industry.

At CIRCULAR STRUCTURAL DESIGN, our mission is to seamlessly integrate the principles of circular economy and sustainable design into every structural project we undertake. Our approach is guided by three core principles:

1.) Minimizing waste and emissions: We prioritize minimizing resource consumption and emissions associated with our structures, ensuring that our designs have minimal environmental impact.

2.) Keeping products and materials in use: Our commitment to extending the lifecycle of materials, components and buildings drives us to promote high-level reuse and repurposing wherever feasible, thus reducing resource consumption and waste generation.

3.) Using renewable resources: In response to the ongoing depletion of finite resources, we actively explore and incorporate renewable material options whenever possible.

It is our mission to bridge the gap between research and practice and to integrate the principles of circular economy into everyday structural design projects.

Within the ReCreate project I am the lead of the WP5 that explores aspects of redesign and reassembly. I, as a structural engineer, focus on the implications for the design process and the actual technical and practical implementation in the context of the reuse of existing components.

2. Can you provide more information on your work package and how it contributes toward the project?

WP5 consists of two parts: redesign and reassembly. We explore design implications of the stock-based design and develop new connection types or put existing connections to the test to reconnect existing precast concrete elements.

Traditionally the design process follows a linear model. The building design is developed first and the required structural elements, that are needed to accomplish this design, will be manufactured from scratch according to the dimensions required for the project.
The whole work process needs to be rethought when it comes to reusing elements. When maximizing the integration of reused elements in a stock-based design approach, the traditional design approach of form-follows-function will be replaced by a new principle: form-follows-availability.

To enable the load-bearing reuse of existing components, connection details are required with which these can be reconnected. This is why the documentation of connection details that already exist and allow for an easy reuse and developing new connection details that will also allow for an easier future disassembly are the second focus point in WP5.

Perhaps the most interesting thing about the ReCreate project is, that these approaches are not only theoretically explored, but will be implemented in real live pilot projects. Hence a large part of WP5 is designing those pilots and sharing the lessons learned throughout the process.

3. Tell us more about task 5.1 on the framework of parameters for the development of the redesign and reassembly process for precast concrete elements in new buildings?

As stated, the design process is completely different from the status quo, when it comes to the integration of reclaimed elements. Here, the first step is to capture relevant information about the reclaimed precast concrete elements in order to know where and how those may be reused. So, the first thing you need to know is what those elements are. In task 5.1 we explore, what parameters and object properties need to be gathered and at what design stage different information needs to be available to enable architectural and structural design. Here, we are looking at typological and dimensional information and the structural capacity of the different elements.
This task closely interacts with other working packages, such as WP1: the analysis of precast concrete systems, WP2: the deconstruction as we are strongly interested in the shape and capability of each element after deconstruction, WP3: the logistics and processing and WP4: the quality management.

The knowledge gained through this process will be captured in a design guideline (deliverable 5.1) at the end of the project.

4. How does Task 5.3 highlight the challenges and complexities faced in the architectural and structural design process when reusing precast concrete elements?

Task 5.3’s focus is the understanding and developing of a design approach and actively implementing it in the design process in the pilot projects. The traditional approach of an architect developing a space concept first and an engineer designing the structural elements afterword to erect this space does not work when the pool of existing elements limits what they might be used for. Means: the design process needs to run “in reverse”. To understand the capability of the existing elements and what uses they can be put to, requires a close interaction of architects and engineers from the very beginning of the project.
Each country cluster approaches this separately and faces different architectural and structural challenges. Those experiences are discussed within the ReCreate project team and the experiences will be summarized in the form of a best-practice recommendation that incorporates the lessons learned from the project.

5. How does Task 5.3 propose to incorporate artificial intelligence (AI) and neural networks into the design process? What benefits are expected from using AI in this context?

When it comes to designing with reclaimed elements, different design approaches can be explored and different country clusters follow different approaches of how to start with a stock of reclaimed, prefabricated concrete elements and get to the finished product:  a building partially designed from those elements.
That insights gained and lessons learned will be gathered in a design manual that will be published as D5.1 at the end of the project.

Generally, the most straight-forward approach to designing with precast concrete elements is trial- and-error.

The larger the implicit knowledge about the reclaimed elements and reuse options are, the better the outcome will be.

Another possibility is a design optimisation aided by parametric design tools. Within the project research is undertaken how the design process can be aided by existing and newly developed design tools that allow for an optimisation.

Also, an AI-aided element matching between a pool of existing elements and a proposed new design will be explored. Especially when the list of reclaimed elements is very large, human trial-and-error can reach its limits. The AI-aided approach tries to do a first step by exploring a matching algorithm that highlights optimisation potential and best matches.

6. Can you tell us more on the processes and challenges that you are facing with the connections in task 5.2 and how do they influence the rest of your work? What are some of the risks that are present here? In the context of design for disassembly (DfD), how does Task 5.2 investigate the possibility of easier deconstructability in the new connections?

The feasibility and ease of new structural connections construction for reclaimed element has a large impact of the likelihood integration of reuse structural elements. In WP5 options to reconnect those structural elements will be explored. Particular attention is paid here to when the same connection points can be reused (with minor adjustments) during reinstallation. The connections that are to be used in the construction of the pilot projects are described. New connection types are also being developed in the project, those put a great emphasis on the possibility for a simple future deconstruction.
The general approach in the recreate project is, that both, new connection details that allow for an easier future disassembly are being developed in project funded university research studies. At the same time in the real life pilot projects conventional connection details that already exist, might also be used.

7. What is the relationship between the re-use of precast concrete elements and sustainability certificates, such as DGNB as discussed in Task 5.3?

When it comes to evaluating the sustainability of the reuse of precast concrete elements from an ecological viewpoint, two aspects can be highlighted. The reuse may help to save both finite resources and avoid new production emissions.
The topic of resource conservation in the context of a circular economy has recently come increasingly into focus, and green building certificates are trying to account for it. One example is here the the DGNB, where I am a member of the committee for lifecycle and circular design, the “DGNB Ausschuss für Lebenszyklus und zirkuläres Bauen“.

Important aspects such as reuse and deconstructability, which are addressed within WP5, are discussed here.

Additionally, a buildings carbon footprint is of course an important aspect to consider when it comes to evaluate the overall sustainability. Within WP5 internal meetings, the use of “LCA-as-a-Design-Tool” is repeatedly addressed. The goal is to actively identify and prioritize the lowest-emission design variant through regular design-integrated LCA (Life Cycle Assessment). Here we also closely collaborate with WP6.

8. How does Task 5.4 ensure a smooth implementation of the four real-life pilot projects, considering factors like transportation, supplementary materials, and equipment?

Let’s have another interview next year, then we can answer this question 😊

9. Who is Patrick Teuffel when he’s not working on the project and what does he like to do in his free time?

As for my personal preferences, I thoroughly enjoy engaging in sports like running and mountain biking, finding exhilaration in the great outdoors. Additionally, I have a passion for savoring good food, particularly exploring diverse culinary experiences. Living in the vibrant city of Berlin, I find immense pleasure in attending concerts and immersing myself in its dynamic cultural scene. Furthermore, I have a strong interest for exploration, fueled by my love for traveling and exploring the world, seeking out new adventures and experiences wherever I go. Last, but not least, I’m doing the final editing of this text in a spa – now you know where you can find me on a Sunday afternoon.


June 19, 2023
You-have-the-power-to-protect-your-peace.-–-kopija.png

As part of the activities under Work Package 2 of the ReCreate project, our project partners developed a BIM-based pre-deconstruction audit. We sat down with Marcel Vullings from TNO to gain more insight into the audit and to get more details. Here’s our full interview with him:

 

I: What is the main focus of the pre-deconstruction audit in the ReCreate project?

M: The main focus of the pre-deconstruction audit in the ReCreate project is to gather and validate the information that is crucial for the deconstruction process. This involves putting significant effort into tasks such as inspecting archives, conducting inspections and testing, and ensuring the traceability of information. The goal is to establish a comprehensive understanding of the structure and elements involved, making connections between the gathered information and the actual components. By undertaking these steps, the pre-deconstruction audit aims to provide a solid foundation for the subsequent deconstruction activities.

 

I: What type of data is gathered during the survey of the existing building in ReCreate?

M: The pre-deconstruction audit process begins with gathering information from the archives to prepare for the building inspection. Once the necessary preparations are made, the next step is to inspect the building itself. Before conducting the inspection, it is important to strip the building of loose items such as carpets and wallpaper to ensure clear visibility of the structural elements. This provides an opportunity to thoroughly examine the structure.

During the inspection, several factors are considered. The overall state of the structure and its elements is assessed, looking for any signs of damage, cracking, or corrosion. Deviations from the norm are noted, such as brown spots that may indicate possible corrosion. Detailed documentation is crucial, including taking pictures and measurements of cracks and other issues. Videos are recorded to allow for a review of the inspection back at the office. Both overall views and close-ups of specific details are captured.

To ensure accurate understanding, it is important to make sense of the gathered information and create a cohesive narrative. Measurements of various dimensions are taken, and a comparison is made between the building’s drawings and its actual construction. Changes may have been made over time or during the building process. Digitalizing the building, its structure, and its elements is also part of the process, utilizing different types of measuring devices.

Finally, both the interior and exterior of the building are inspected to ensure a comprehensive assessment.

 

I: How is the identification system in ReCreate utilized to trace and couple physical elements with data?

M: Tracking and tracing each separate element is of utmost importance throughout the entire process. This is essential because when designing a new structure, structural engineers need to provide calculations, reports, and drawings to demonstrate that the structure is safe and compliant with regulations. Various checks, including those by municipalities, are conducted to ensure that each part of the structure performs as specified in the documentation.

For reused elements, the information associated with each element is crucial. Any mix-up or uncertainty regarding the information of a particular element can have severe consequences. Therefore, if there is any doubt about the information of an element at any point in the process, it cannot be reused and becomes useless. The objective, however, is to reuse elements whenever possible.

To achieve effective tracking and tracing, it is essential to connect the information to the corresponding elements such as columns, beams, walls, slabs, etc. This can be accomplished by attaching tags to the elements during the initial phases of deconstruction or up until the moment an element is deconstructed. It is crucial not to delay this process. The location of an element in the old structure serves as the only clue to establish the connection between the physical element and the associated information.

Tags can take the form of marks, such as barcodes, QR codes, or plastic tags placed on the elements. Alternatively, electronic tags can be used. These marks and tags need to be secure and durable enough to withstand deconstruction, transportation, storage, handling, reconstruction, as well as exposure to various weather conditions, heat, and sunlight. They must be foolproof.

In addition to secure marking, establishing and maintaining a robust connection with a database or information system is essential. Building Information Modeling (BIM) models of the elements can also be utilized to ensure a continuous and reliable link between the physical elements and their corresponding information.

 

I: Why is it important to identify hazardous and/or toxic materials before dismantling a building in the ReCreate project?

M: Strict regulations are in place to address hazardous and toxic materials, aiming to establish and uphold a healthy work environment for workers, ensure the well-being of the surrounding area, and contribute to a healthy overall environment. It is crucial to adhere to these regulations to create a safe and sustainable space. Materials falling under this category cannot be reused and must be handled separately and disposed of in a safe and environmentally friendly manner.

To effectively manage these materials, it is essential to determine their presence within the building. For instance, in the case of asbestos, special suits are required for safe removal. The process of identifying and dealing with hazardous materials is subject to scrutiny by the department of health. Mistakes in handling these materials can have severe consequences, including loss of life or significant fines.

Compliance with the regulations ensures the protection of both workers and the environment, emphasizing the importance of following proper protocols for the safe removal and disposal of hazardous and toxic materials.

 

I: What methods are used to record visual or detectable damage to elements in the pre-deconstruction audit?

M: At various stages throughout the process, the structure and elements undergo inspections to assess any damages, degradation, or cracking. These inspections occur from the initial assessment until the element is reassembled in a new building. The goal is to determine whether an element can be reused and ensure its proper performance throughout its new lifespan, which could extend for several decades or even longer.

Inspections rely on a combination of visual examination by experts, along with the use of pictures, videos, and electronic measuring devices such as point cloud measurements. Additionally, simple tapping on the surface of the concrete can provide valuable information. Specialized equipment like the Schmidt hammer and ferro scanners may also be employed for more detailed analysis.

However, it is crucial that these inspections are carried out by specialists, as not every crack or damage is necessarily catastrophic. Concrete structures commonly exhibit cracks, which are even accounted for and described in the Eurocodes—design standards for concrete structures. The size and location of cracks play a significant role in assessing their impact and determining whether they conform to acceptable limits. Therefore, the expertise of specialists is vital in accurately interpreting the findings of these inspections.

 

I: How does the surveying process in ReCreate address stability issues during deconstruction?

M: Before carrying out the deconstruction itself, a structural engineer investigates the precast concrete structure to determine the optimal approach for dismantling the building, including the sequence of removing each element. This process must prioritize safety and ensure the stability of the remaining structure throughout the deconstruction process. To achieve this, a comprehensive deconstruction plan is created, which may involve implementing measures such as temporary scaffolding to stabilize the structure during the deconstruction phase.

 

I: What information does the survey aim to gather regarding the construction methods and structural systems of load-bearing elements?

M: This process can involve a considerable amount of technicality, but it can also be straightforward. Take, for instance, the location of a building, which provides valuable insights into its wind loading. Various factors differentiate a building situated at sea, inland, on an open plain, or within a city. Additionally, the dimensions of the building are crucial. Larger buildings must withstand greater and higher wind loads compared to smaller ones. However, for a structural engineer to accurately assess the load-bearing capacity of each precast concrete element, precise knowledge of the element’s location, layout, and dimensions is required. It is also essential to have information about the material properties of the steel and concrete, as well as how they are interconnected within the structure.

Furthermore, even the positioning of an element within the building, such as a column, provides relevant information. A ground-floor column typically exhibits greater load-bearing capacity than a column located at the top of a building. All of this information serves as valuable clues to determine the load-bearing capacity of each precast concrete element. The more comprehensive the available information, the more accurate the assessment becomes. In essence, if the dimensions of an element, a detailed description of the reinforcement, and the correct material properties are known, a structural engineer can reverse engineer the load-bearing capacity of that element. This process can be complex, but having additional information significantly simplifies it.

 

I: How does the acquired knowledge during the survey stage contribute to deconstruction planning in ReCreate?

M: Yes, this information is crucial for creating a deconstruction plan and ensuring the feasibility of the deconstruction process. Without it, the undertaking becomes unsafe and hazardous. A comprehensive deconstruction plan is essential, requiring detailed information about the building, structure, materials, connections, and the shape of the elements, among other factors. For instance, if the method of connection between elements is unknown, it becomes challenging to determine the appropriate cutting approach to separate the elements from the structure effectively. Consequently, incorrect cutting can lead to damage and render the elements unusable.

 

I: How does the pre-deconstruction audit combine modern survey technologies with traditional building surveying techniques?

M: During the audit, a wide range of methods are employed, with each task requiring its own specific technique. Various techniques and tools are utilized to simplify the process and gather accurate information quickly and reliably. These techniques and tools can be quite straightforward, such as visual observation, using a simple ruler for measurements, or employing a laser scanner to measure distances. Drones may also be employed to access challenging locations, such as high facades of buildings. Ferro scanners play a crucial role in detecting reinforcement within the concrete elements, while even a loupe can be utilized to measure the width of cracks in concrete. Additionally, pictures and videos are used to digitally measure elements. The available range of techniques and tools is extensive, offering a diverse array of options for conducting the audit.

 

I: What role does non-destructive electromagnetic and radar identification play in the ReCreate project, specifically during the survey of the donor building?

M: The non-destructive nature of obtaining information from precast concrete elements is evident, as the goal is to avoid damaging or destroying the elements in the process. Therefore, techniques employed to gather information must be non-destructive. In concrete, one critical aspect of obtaining information pertains to the location and dimensions of the reinforcement within the precast concrete element. These factors determine the element’s load-bearing capacity. Concrete elements require steel reinforcement, with concrete handling compression and steel managing tension—an ideal combination.

Steel can be detected using magnets, whether traditional or electronic magnets utilizing electromagnetics. A scanner is used to glide over the surface of the concrete, while the magnets detect variations and discrepancies. The scanner’s software interprets this information, providing readable details about the reinforcement within the concrete element. However, it is important to acknowledge the limitations of this technique. In certain situations, these methods may not be entirely reliable. To ensure accurate findings, it is essential to gather collaborating information from various sources, such as drawings, old calculations, and even resorting to destructive testing if necessary. Destructive testing involves breaking a portion of the element to visually examine it. Although this may result in sacrificing some elements, it becomes a last resort when other methods fail to provide satisfactory information.

 

I: How does ReCreate plan to bridge the gap from deconstruction to controlled disassembly for future buildings?

M: ReCreate plans to bridge the gap from deconstruction to controlled disassembly for future buildings through extensive data gathering and knowledge sharing. The project aims to learn from real-life pilot projects, examining what works, what doesn’t, and identifying areas for improvement. One important observation made during these pilots is that plastic tags are not suitable due to the fading of text under sunlight, rendering them unreadable. This highlights the need to explore alternative tagging methods.

Various methods of cutting through elements were explored, including sawing (using blades and cables), drilling, and high-pressure water jets. Each method has its pros and cons, and it is essential to understand and utilize them appropriately. There is no one-size-fits-all approach or tool for deconstruction. Efficiency and safety must be combined, taking into account the specific requirements of each project.

The ReCreate project, with its pilot projects conducted in different countries, aims to collect valuable data, information, and experiences. This wealth of knowledge is expected to have a significant impact, benefiting numerous projects in the future. TNO, as part of the project, plans to apply this new knowledge to other projects, including different types of deconstruction projects such as infrastructure, as well as exploring other materials like steel and wood structures. The research conducted within ReCreate has the potential for widespread application across various domains.

 

I: What role does cost-efficiency play in the development of the pre-deconstruction audit process in ReCreate?

M: Cost-efficiency plays a significant role in the development of the pre-deconstruction audit process in ReCreate. Currently, cost remains the primary factor driving the choice of methods for recycling concrete structures. Traditional demolition is often perceived as the cheapest option and, consequently, the most widely employed approach, despite its limited environmental friendliness. However, there is a need for a shift in societal mindset towards normalizing the reuse of materials and products as the first and natural step, rather than defaulting to purchasing new ones.

Lowering the costs associated with deconstruction and the reuse of precast concrete elements is a crucial objective. In this regard, ReCreate’s efforts are commendable, as the project strives to provide valuable services in enhancing efficiency within the field. Furthermore, implementing regulations and other measures can contribute to achieving cost efficiency and promoting sustainable practices in the industry. By addressing cost barriers and highlighting the economic benefits of deconstruction and material reuse, ReCreate aims to drive the adoption of more environmentally friendly practices in the construction sector.

 

I: How does ReCreate aim to optimize the detection methods in relation to the prefab systems and decoupling methods?

M: ReCreate aims to optimize the detection methods in relation to prefab systems and decoupling methods by considering them as additional tools rather than the sole approach. While detection plays a role, it is not the sole method employed. The study of original design drawings and calculations serves as the primary source of information for decoupling. Additionally, inspections and a comprehensive understanding of precast concrete structures provide a complete picture of the building. Detection techniques can be utilized to identify reinforcement in connections and other anchor systems where applicable. By integrating various approaches, ReCreate seeks to enhance the overall effectiveness of detection methods in relation to prefab systems and decoupling processes.

 

I: What is the significance of testing and validating the generic approach developed in ReCreate’s real-life pilot projects?

M: Testing and validating the generic approach developed in ReCreate’s real-life pilot projects holds great significance. It offers a comprehensive understanding of the entire deconstruction and reassembly process involving reused precast concrete elements. This includes all the associated aspects such as life cycle assessment (LCA), life cycle costing (LCC), compliance with regulations, development of business models, effective planning, information management, data gathering, innovative design approaches for structures using reused elements, creation of new connections, and the integration of old and new components through demountable connections.

The ability to observe these processes in real-life scenarios through four distinct pilot projects in different countries, involving diverse organizations and companies, provides invaluable insights. It allows for a thorough examination of the practical implementation of the generic approach, assessing its feasibility, effectiveness, and potential for scalability. These pilot projects serve as a robust testing ground, offering the opportunity to refine and validate the developed approach based on real-world challenges and outcomes. Ultimately, the knowledge gained from these pilot projects will contribute to advancing sustainable practices in the construction industry and facilitating the widespread adoption of the ReCreate project’s principles and methodologies.





EU FUNDING

“This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 958200”.

Follow us: