Blog posts - Recreate


Project and industry partners involved:

BTU Cottbus-Senftenberg: Prof. Dr. Angelika Mettke, Viktoria Arnold, Jakob Fischer, Christoph Henschel,
Sevgi Yanilmaz, Anton Leo Götz

IB Jähne: Peter Jähne, Milena Zollner

ECOSOIL OST: Dietmar Gottschling, Bernd Mathen, Jens Muschik, u.a.

Figure 1 – 3D Model of the test building (Source: BTU)

The objective for the test construction was to generate findings on the practicability of the construction method by reusing precast-reinforced concrete elements. The reassembly and disassembly of the test building was carried out by and in cooperation with the German ReCreate industry partner ECOSOIL. In particular, the combination of used reinforced concrete elements with timber stud walls was to be tested, as well as the new steel connectors developed as part of WP5. A new filling mortar was tested for its applicability to form the butt joints between the precast concrete elements.

Figure 2 – Donor Building Type WBS70-C before deconstruction (Source: BTU)

The donor building for the test building was a five-story WBS 70-C apartment block on Karl-Marx-Straße in the small town of Großräschen in Brandenburg. A partial demolition was carried out here as part of a refurbishment project, in which the upper 2 or 3 stories were deconstructed. From the deconstruction mass, 12 precast concrete elements were transferred to Cottbus for the test building: 3 exterior wall panels, 6 interior wall panels and 3 ceiling panels (see Fig. 3) after they had been selected and marked in the installed state.
The element-oriented deconstruction began in November 2023 and was completed at the end of February 2024. The dismantled precast reinforced concrete elements were stored on the construction site in Großräschen for another month before being transported the approx. 40 km to Cottbus in April 2024.

Figure 3 – Overview of elements needed for the test building (Source: BTU)

Figure 4 – Floor plan of the test building (Source: BTU)

When designing the test set-up, an attempt was made to reproduce as many different element connection situations as possible. These include corner connections between two concrete elements or between a concrete element and a timber stud wall (corner connector), longitudinal connections between two concrete elements (longitudinal connector) or the centred connection of a concrete wall element with a concrete element installed at right angles (T-connector) – see Fig. 5 and 6.

The newly developed connectors are made of 8 mm thick flat steel and are attached to the top of the wall elements with concrete screws. The connectors can be fixed in both concrete and wood and are therefore very suitable for combining these two building materials. The steel connectors mounted on the top can be embedded in the mortar bed required for the ceiling elements anyway, so that they do not present any structural obstacle and are also protected against the effects of fire and corrosion.

Figure 5 – 3D Models of the newly developed connectors (Source: BTU)

Figure 6 – Placement of the steel connectors in the test building (Source: BTU)

In addition, the design concept of the test building was planned in such a way that a wall element and a ceiling element were to be cut to size in order to test the effort involved in sawing the concrete and whether the cut precast concrete elements could be used as intended.

The former airfield in Cottbus, which had been decommissioned for several years, was chosen as the location for the test building. There was sufficient space, a load-bearing concrete slab as a base and a suitable access road for the delivery of the reinforced concrete elements.

In March 2024, work began on the production of the timber stud walls and the setting of the masonry calibrating layer to prepare the construction site for the installation of the concrete elements. The used concrete elements were delivered to the construction site on April 18 and 19 and stored in the immediate vicinity of the test building. They were professionally reassembled within two days. Each wall element was placed on the calibrating layer (see Fig. 7, center), leveled and secured using mounting braces (see Fig. 7). The elements were joined together using the above-mentioned flat steel connectors. The use of the innovative SysCompound joint mortar (based on fly ash and recycled aggregate) was tested for the butt joints between the concrete elements. Various formulations for the SysCompound were developed and tested in the laboratory in advance. The bond between the old concrete and the fresh joint mortar was of particular interest. In this respect, not only the mortar strength played a role, but also the shrinkage behavior of SysCompound in comparison to commercially available joint mortar mixtures.

Figure 7 – construction process of the test building (Source: BTU)

Figure 8 – construction process of the test building (Source: BTU)

The assembly of the test construction went smoothly and quickly (see Fig. 8) so a positive conclusion can be drawn for future pilot projects. The flat steel connectors have proven successful due to their simple fastening by means of screws (assembly) and disassembly; the combination of reinforced concrete and timber stud wall elements has proven to be practicable and the sawn concrete elements could be reassembled without any problems.
From a planning point of view, it is recommended that larger dimensional tolerances of the concrete elements be taken into account, as the actual geometric dimensions sometimes deviate from the planning and the edge zones of the dismantled concrete elements are no longer level in some cases. Concrete sawing work is known to be feasible but should be reduced to a minimum due to the high costs and energy required. When filling the joints, it turned out that due to unevenness or broken edges and corners of the concrete elements – as explained above – significantly more grout was required in some cases than assumed in the planning.

Figure 9 – Aerial view of the test building after completion (Source: C. Busse + S. Karas)

Overall, the test construction on the former airfield site in Cottbus was a complete success. The BTU team would like to take this opportunity to thank the landlord DLR for the space used, the skilled workers from ECOSOIL and the logistics service provider Auto Klug. Without the cooperation of the aforementioned parties, the realization of the construction project in this form would not have been possible. In mid-May 2024, the test building was dismantled/disassembled again and transported away for temporary storage at a recycling yard 42 km away. If the used concrete elements are not requested as components for reuse, they will be recycled and are therefore still available through material recycling.

June 20, 2024

Antti Lantta, project manager (building demolition), Umacon & Juha Rämö, technology director, Consolis Parma

The earth’s carrying capacity is being tested, and it cannot sustain the growing use of virgin natural resources on the scale required by the current economic and population growth. The most acute environmental damage of our time results from global warming and the loss of biodiversity.

The built environment is of great importance for an ecologically sustainable society, as the construction sector globally consumes about half of all the world’s raw materials and causes about a third of greenhouse gas emissions. From the perspective of a circular economy, there is a huge potential here.

This includes the EU-funded four-year international research project ReCreate (Reusing prefabricated concrete for a circular economy), which studies the reuse of concrete elements, which are deconstructed from buildings slated for demolition, in new construction. Umacon, a top demolition expert, and Consolis Parma, Finland’s leading manufacturer of precast concrete elements, are also involved in the research project.

Umacon renews demolition industry in Finland

The prevailing demolition method in Finland focuses on material recovery, where the secondary raw material materials created through demolition are used in the recycled or otherwise utilized, for example in earthworks. Reusing whole precast concrete elements is rare, even though valuable building parts and equipment, such as building services components, industrial machinery and steel or wooden columns and beams, have been salvaged in Finland in the past. Until now, deconstruction has been driven more by the resale value of building components and equipment than the goal to reduce carbon dioxide emissions.

The reuse of precast concrete elements has not been implemented on a larger scale in Finland before. For Umacon, environmentally friendly and sustainable construction is part of its business values, so applying for the ReCreate research project was a natural choice. The work phases of the deconstruction project had to be planned in a new way so that the elements would not be damaged during the deconstruction work. During the project, new working methods and methods for detaching and lifting elements were developed to ensure that the deconstruction takes place safely and efficiently. Efficient working methods were refined as the project progressed. For example, it took four weeks to deconstruct the elements of the topmost floor, but the last floor was completed in just five working days! The key to a successful project was combining an array of different working methods that had been tried and tested in previous demolition projects into a functional deconstruction process.

Umacon wants to renew the demolition industry in Finland and become a leading company in the deconstruction sector. The success of the ReCreate research project shows that deconstructing precast concrete elements as intact is technically possible. By steering legislation towards low-carbon construction and improving the productivity of deconstruction, deconstruction will mainstream in Finland. Deconstruction and construction are teamwork that require the cooperation of all parties to achieve the goals.

New business for element manufacturer Consolis Parma

Consolis Group is committed to the targets set out in the Science Based Targets initiative. The Group’s global goal is to achieve zero emissions by 2050. The Finnish Consolis company Parma aims to reduce emissions by five per cent annually and halve them by 2035. The most significant means for reducing emissions are the increased use of low-carbon concrete elements, energy efficiency, and the circular economy.

Parma’s low-carbon products are based on substituting cement with binders from industrial side streams. In addition, crushed concrete is utilised in place of virgin aggregates. In the future, one possibility is to supply fully recyclable elements alongside new low-carbon concrete elements.

In the ReCreate research project, the reuse of whole elements is focused on in real life. The elements salvaged from the donor building in Tampere have been delivered to Parma’s Kangasala factory, where they undergo a quality check as well as the necessary modifications and equipment for reuse. The elements that have now been reclaimed were originally manufactured at the company’s factory in Ylöjärvi, Finland, and thus Parma is involved in a research project to promote the reuse of the elements it has manufactured itself.

In this kind of new business, the role of an element manufacturer may include, for example, design, quality control, dimensional changes and equipment, as well as other functions that are suitable to perform alongside new production at the precast concrete factory. Issues to be studied that deviate from new production include approvals, processes and logistics (deconstruction of elements, transfer to the factory, factory-refurbishment measures, transfer of elements to a new site and installation of elements) and environmental permit practices.


Tove Malmqvist Stigell, Senior Researcher and Docent, KTH Royal Institute of Technology 

A transition towards a more circular economy is currently lined up by multiple ongoing policy processes, not least within the EU Green Deal. One novel regulatory development already in effect in a few European countries is mandatory climate declarations and limit values on GHG emissions for buildings. What are these regulations and how do they connect to the re-use of precast concrete elements?

After several decades of development of LCA (Life cycle assessment) methodology for buildings aiming at guiding low-impact design in a life cycle perspective, a raised interest for building LCA has been seen during the latest years. Not least insights on the significance of embodied greenhouse gas emissions in buildings, has led to LCA-based regulations being introduced in several European countries. These require mandatory climate declarations of, so far primarily, new-build projects, and some of them also require building projects to display emissions below a set limit value. Such a climate declaration is a quantitative assessment of life-cycle related greenhouse gas emissions (GHG) of the building that the developer has to perform and hand in to the authority. Countries such as France, Sweden, Denmark and Norway already have such regulations in effect since 2022-2023. In France and Denmark limit values for these emissions are part of the regulation. Such limit values are represented by a set number of kg CO2-equivalents per floor area or per floor area and year, which can be tightened over the years to support further GHG emission reduction. Such limit values are also planned to be introduced in the coming years in Sweden and Finland. The Netherlands introduced a more comprehensive LCA-based declaration with limit value already in 2017. At EU level, the recast of the EPBD (Energy performance of buildings directive) requires a mandatory climate declaration for new-build from 2027 for buildings over 2000 m2 and from 2030 for all buildings, and similarly the EU taxonomy stipulates such a declaration from 2023 for buildings over 5000 m2. 

In the light of this type of regulatory development, the interest for developing methods to implement re-use of building components in new-build has increased much. The reason for this is that reuse of components could be one, among other strategies, to ensure low-carbon designs and to comply with tougher limit values in similar regulations. This since re-used components in general have lower environmental impact than virgin ones. To incentivize such strategies further, the Swedish regulation, as an example, makes it possible for a developer to use re-used products “for free”, that is count them as zero impact in the stipulated climate declaration. When setting up the mandatory climate declaration, the Swedish regulation requires a developer to make us of generic data from the national climate data base of Boverket unless EPD´s (environmental product declaration) exist and are used (and also verified that these products were procured to the building at stake). Reused construction products in Boverkets database are however currently allocated zero GHG emissions, thus incentivizing reused products in new building design This is naturally a simplification for to create an incentive, but since EPD´s on re-used building components are still extremely rare it would in the current situation not benefit re-use of precast concrete elements to require more detailed information on e.g the emissions of the reconditioning processes. Meanwhile, this type of information is currently built up in the ReCreate project based on the demonstrators in the project. 

A central issue of significance in the design of building LCA studies, including the method of LCA-based regulations, is the coverage of processes, that is the system boundaries for the assessments. It is often necessary to omit certain processes due to lack of data or to focus the assessments on known hot-spots. When these types of assessments now enter regulation, different countries take slightly different approaches to the choice of system boundaries which has led to discussions regarding how they then incentivize, or not,  certain low-carbon strategies such as circular solutions. For example, the Swedish regulation focus the production and construction stage impacts, that is the embodied GHG emissions of modules A1-A5, according to the European standard EN 15978. In a life cycle perspective, these emissions constitute a significant, and earlier non-regulated, hot-spot. These emissions can also be verified by the completion of a building project, compared to emissions associated with the use and end-of-life stages of buildings. Principally, one could argue that such a more narrow system boundary increase the incentives for re-use of precast concrete elements since the emissions of modules A1-A5 in contemporary construction of buildings are much dominated by the materials of the structure. If implementing more of a whole-life system boundary, as for example is planned for in Finland, the proportional impact of modules A1-A5 will be less, which might reduce the incentivizing effect of re-using building components. 

A well-known obstacle to reuse today is the difficulty, and thus the high costs, of dismantling buildings for reuse of elements and components with a viable service life left. This is a question that often comes up in connection to building LCA, with the idea that including the end-of-life (module C) and benefits and loads beyond the system boundary (module D) in the assessment system boundary would incentivize measures taken for design for re-use, including design for disassembly (DfD). However, end-of-life emissions associated with pre-cast concrete elements are much lower compared to emissions associated with the production stages (modules A1-A3) of contemporary construction in the European context, and it may thus be questioned to what extent it´s inclusion could have an incentivizing effect.  

An aim with module D is to give room for displaying future potential benefits in form of emission savings due to e.g reuse of components in new constructions, to be reported separately according to the EN 15978 standard. It should be noted that module D highlights potential future savings, the extent of which depend on the future handling of the components, which is hard to predict. The prospects for future re-use improve with DfD implemented, but the calculation of module D is not linked to whether such design strategies were implemented or not. Finally, one needs to remember that both module C and D deals with assessment of potential emissions in a distant future, thus their assessment becomes very uncertain. Normally, these assessments reflect today´s technology, but an increasing number of voices promote that decarbonization scenarios should be applied in similar long-term assessments. If so, the significance of module C and D also decrease. 

The proposed Finnish regulation is an example of a more comprehensive system boundary. It for example introduces thecarbon handprint which more or less reflect an assessment of module D to, in quantitative terms, visualize potential future benefits of re-using the components of the studied building along with other potential benefits of implemented design strategies

So to sum up, the emerging climate declaration regulations in various European countries do create new incentives to apply re-use of prefabricated concrete elements in today´s new-build. However, to for increased implementation of DfD strategies in today´s new-build for improving prospects for future re-use, these types of regulation do not provide direct and clear incentives. Instead, complementary steering mechanisms might be needed to promote DfD strategies


Boverket climate database in Sweden:  

Finnish emissions database for construction:   

Example of proposed ongoing regulatory development: the next steps proposed for the Swedish climate declaration regulation:,on%20climate%20declarations%20for%20buildings  

March 15, 2024

Inari Weijo, business development manager (refurbishment), Ramboll Finland

During my master’s thesis work over 15 years ago, I familiarised myself with precast production and its history in Finland. After that, precast concrete has been playing a role in one way or another in my work career. Many projects have involved either repairing precast concrete buildings or building new ones. Since the 1970’s, precast concrete production has formed a significant part of the Finnish construction sector. The systematic and ‘simple’ method provided a standardized way to build, and it quickly became very widespread. The precast concrete system has been criticized for producing a unified stock of buildings, reducing versatility in urban environment and suppressing designers’ creativity. Since the early days, though, the technique spread to erecting ever more complex and monumental buildings. It has been foundational for providing a fast and trusted way for building construction in Finland. There are thousands and thousands of precast concrete buildings here, and some of them are already slated for demolition. A part of the buildings suffers from degradation, but many are just mislocated from today’s point of view.

Figure 1. Finnish deconstruction pilot in Tampere, building vacated before the deconstruction of elements for reuse.

I believe that technical know-how is essential for creativity and enables responsible and sustainable construction. We must be more aware of our decisions’ environmental impacts when building new. Architects’ and engineers’ creativity is ever more challenged as we must prioritize sustainability values. Knowing the technical limitations and possibilities is crucial, so that creativity can be unleashed in the right place at the right time, and adverse uncertainties can be eliminated. Building new is inevitable in the future too, but we need to redefine ‘new’. We must apply regenerative thinking, create net positive solutions and aim for more ambitious circularity. The actions we undertake should have a positive impact on nature and the environment so that instead of consuming it, they restore and revive it. This is a leading value for Ramboll.

Figure 2. Regenerative approach to construction. Image source: Ramboll.

The prevalence of precast technology and the aim for a regenerative effect on environment are two leading thoughts that that drive our ambition here at Ramboll to examine and challenge the present business as usual in the construction sector. The headline’s statement inspires me and my colleagues at Ramboll Finland when we seek to find alternative ways to utilize what already exists. The built environment is a bank of building parts that has technically perfectly fine components stocked in it, preserved intact inside buildings. Only processes and systems to utilize them effectively are needed. I sometimes face people itemising reasons and obstacles why reusing building parts is way too difficult. I believe this pessimistic attitude may well up from the insecurity that follows from the building sector changing dramatically. There may also be a disbelief whether the huge leap, which is necessary, can be taken. Some of the items that the sceptics list are well known, some are relevant, and some are just fictional. We need to keep solving them one by one, showcasing with real-life projects that this is possible and acquire more experience to narrow down the gaping hole between the ‘old’ and the ‘new’ way of building.

An important milestone has been reached when the Finnish cluster finished the deconstruction of the pilot building in Tampere this autumn. We succeeded to reclaim several hundred hollow-core slabs, columns and beams intact, ready for use on next building site. It’s been encouraging to gain good test results, both before deconstruction, through a condition investigation, and after deconstruction, as some of the deconstructed elements have been load tested. All has been well from an engineer’s perspective! Now, the reclaimed building parts are being fitted into prospective new building projects. The search for the new building site has not been stalled because of any technical issues but rather by the currently poor market situation.

That final issue to solve – an important one indeed – is the business model that can support reuse. A circular business needs more collaboration among all the players in the field. Technically we are ready to say ‘yes’ to reusing precast concrete elements!

Figure 3. Reclaimed hollow-core slab, deconstructed from the donor building in Tampere.

February 28, 2024

José Hernández Vargas

Architect and PhD student at KTH Royal Institute of Technology

A precondition for reusing precast elements is a correct understanding of the underlying logic of different building systems and the structural interactions between concrete elements. The analysis of existing precast systems starts with a thorough examination across multiple scales, as building layouts, individual elements and their connections are interdependent.

During ReCreate, several precast concrete systems have been identified and studied. While specific pre-demolition auditing and quality control are critical steps towards reusing concrete elements, this ordering of precast elements operates at an earlier and more abstract level, providing a knowledge base for known precast systems that may apply to multiple instances. This task attempts to provide an overview and develop guidelines for the further classification and digitalisation of precast elements as potential material for reuse. Moreover, the information gathered can serve as methodological guidelines for other systems that may differ from the studied cases but follow the same core principles.

When examining technical drawings from historical precast systems it is important to identify patterns that reveal the systematic ordering of the elements. This initial step involves identifying the underlying measurement system from the axes of the building, from which standard layouts can be inferred in discrete modules. Strict repetition patterns can often be found, especially in residential buildings, where building blocks are constituted by the repetition of a building module defined by a staircase. Similarly, this building module can be divided into residential units corresponding to the individual flats on each floor. Each unit defines in turn a defined arrangement of precast elements that can be precisely estimated for each building.

Thus, architectural and structural knowledge of precast buildings is essential for accurately estimating the building stock and potential for reuse of precast buildings. Given the economies of scale involved in this kind of building, the goal of this step is to build a knowledge base to establish workflows for the ordering and analysis of potential donor buildings for reuse.

Building scale

At the building scale, the analysis centres on the identification and classification of precast structures by structural principles and different building types. Precast buildings can be found in all sorts of applications. Yet, despite the wide range of structural solutions they predominantly follow a limited set of basic structural systems. The most prevalent structural frameworks for precast concrete include the portal-frame, skeletal structures, and wall-frame structures. Structural systems for arranging precast structural systems are closely linked to the building types they serve, responding to the intended program’s requirements. For example, portal-frame structures are most suitable for industrial buildings that require large open spaces. Conversely, for residential buildings wall-frame structures are more often the most cost-effective solution as load-bearing walls also separate living spaces. Beyond buildings completely built out of precast components, specialised subsystems can be found for facades, floors and roofs in combination with other structural systems.

System Skarne 66 (Sweden) and their main structural components form the original technical drawings (left) and as a digital 3D model (right)

Component scale

At the scale of individual precast elements, the foremost classification derives from grouping them by their structural role in the structure, i.e., as walls, columns, slabs, roofs, beams, foundations, and stairs that constitute the structure of the building. These categories are based on the Industry Foundation Classes (IFC) Standard (ISO16739-1), which provides a consistent framework for describing elements within the construction industry. These groups can be understood and modelled as variations of the same parametric object, akin to a family of building components. This process is key for building a comprehensive database of precast elements contained in each building.

To further understand the arrangement of elements that constitute a system, the overall dimensions of each element can be plotted to reveal the dispersion of distinct types within the system. In this example, all the elements are aligned in Cartesian space to define the largest dimension on each axis. This method allows the creation of a ‘fingerprint’ of each building, that shows a concise overview of the dispersion of element types and the individual quantities involved. Alignments resulting from common features such as floor heights and standard modules, can also be observed.

Comparison of the ‘fingerprint’ tool showing the types of elements used in System Skarne 66 (Sweden) and BES (Finland). Dot size indicates the number of elements of each type whereas colour corresponds to the main component categories.

Connector scale

At the connector scale, the different relationships between concrete elements can be related to force transfers and security features to ensure the correct and reliable transmission of forces. Connectors are key to ensuring structural integrity by managing structural loads while accommodating additional stresses and strains that arise from thermal movements, residual loads, seismic loads, and fire exposure, among others. A key aspect for evaluating the connectors is the assessment of the alternatives for disassembly and possibly reusing the connector. Analysing precast buildings at the connector scale allows the identification of the compatibility of precast elements across multiple systems from the analysis and comparison of structural details.

Ordering precast systems across these three scales provides a comprehensive picture of how precast systems are conceived, manufactured, and assembled. This knowledge is instrumental for understanding the possibilities that these elements offer for the next building lifecycle. This ordering will serve as the basis for classifying different precast systems into taxonomies and for the digitalisation of existing precast stocks as material for reuse in future projects.

January 31, 2024

Toni Tuomola, District Manager, Skanska (Finland)

Skanska’s role in ReCreate is strongly linked to its goal of building a better society. Being climate-smart – one of our sustainability themes – supports the achievement of this goal. Within the ReCreate project, we are studying how to produce low-carbon solutions through our business operations. ReCreate will provide us with information on how the circular economy of building elements could be promoted in the future – for example, in the planning phases of construction projects. We can have a major influence over the carbon footprint of a project’s outcome, especially in in-house development projects and, above all, in projects where we are responsible for the design.

ReCreate’s Finnish deconstruction pilot site is a 1980s office building in the city of Tampere. The precast concrete frame has been dismantled using a new technique developed and studied as part of the project. Construction projects are complex entities that demand close cooperation to meet targets. We have already worked with the ReCreate project partners for a couple of years on studies and advance preparations to facilitate the practical deconstruction work. Thanks to the studies, we were capable of dismantling the precast concrete elements intact for reuse. We also know how to verify the properties of reusable elements reliably and cost-effectively.

The possibility of technical implementation alone is not enough


Creating a business ecosystem for reusing building elements is an important part of the project. Reuse requires off-site production plants for factory refurbishment and the creation of an entire logistics chain and information management process to put the elements to use again. A marketplace is also needed to bring product providers and users together. Barriers must be lowered in building regulations and practices, and operating models must be harmonized.

What are the implications if reuse is successful? Firstly, the environmental benefits will be significant because the carbon footprint of reused concrete elements is about 95% smaller than that of corresponding new elements. Therefore, it will be possible to realize a substantial decrease in the carbon footprint of new buildings. Reused elements may not necessarily be used to construct entire buildings, but they would be utilized in the most suitable places. This would ensure that the dimensional and strength properties of reused elements can be used to the best effect.

The reduction in the carbon footprint helps us to meet the low-carbon requirements that will be introduced through regulation in the future. Environmental certification programs such as LEED and BREEAM also award extra points for reusing building materials.

Decommissioning a building by deconstructing elements is slower and more expensive than conventional destructive demolition. However, prior international research has found that a reused element can be as little as 30% of the price of a new element. This is an important perspective for projects researching business opportunities based on the circular economy.

A climate-neutral society is the sum of many parts, large and small. The circular economy of precast concrete elements is one factor among many. We need all the parts to work together to reach this goal.

December 13, 2023

Christoph Henschel, BTU

In conventional architectural projects, the use of the building and the design concept typically determine the dimensions of the structure. This means that the height of spaces, as well as the width and length of rooms, are defined by what will happen in them once they are built. Constraints on the size of a building are usually only imposed by limited budgets, the site and its context, or zoning laws. All of this changes drastically when reused precast concrete comes into play. Suddenly, the structure dictates the spatial dimensions, the grid size or the floor heights of the building design. This changes the design task for the architect and presents new challenges. In order to show that these challenges are also full of opportunities, the following text describes the design process for the German pilot project within the ReCreate project, a youth center for the town of Hohenmölsen.

The design task began with a detailed analysis of the elements that could be salvaged from the donor building. Specific types, dimensions and available quantities of exterior and interior walls and ceiling slabs were determined. Preliminary tests of the concrete strength and examination of the reinforcement properties ensured the suitability for reuse in advance. With this catalogue of elements as a starting point, the design process for the new building could begin – always with the goal of using as many reused elements and as little new material as possible.

Resource: BTU Cottbus Senftenberg

The mayor of Hohenmölsen drew up a rough room plan that served as the basis for the initial design. It included a multi-purpose room, a kitchen and dining hall, several smaller rooms for offices or after-school use, and some additional rooms such as restrooms, storage, and a technical room. With these requirements in mind, an initial building layout sketch was created with the goal of locating the various uses in customizable areas of the future building. Conditions such as the distance from the entrance, the proximity of certain rooms to each other, or the orientation to the east, west, or south to ensure the best lighting were taken into account.

This initial sketch was then superimposed on a grid of 2.4m by 3.6m – the maximum length of the ceiling slabs in the donor building. After a few attempts and several iterations of rotating certain rows in the grid by 90°, two initial building designs were created and presented to the town of Hohenmölsen.

Resource: BTU Cottbus Senftenberg

A special design decision was to use the former exterior walls not only as exterior walls but also as interior walls in the new building to show that the building was created from reused elements. This also allowed for interior windows between two rooms, which was an interesting way to visually connect separate rooms.

Resource: BTU Cottbus Senftenberg

The two initial building designs were presented by BTU at the town hall of Hohenmölsen and then discussed by the mayor with the town representatives. As a result of this discussion, BTU was asked to make a number of changes to the design in terms of size and use. This second design phase resulted in a combination of the two previous designs into one more detailed approach. In this design, it was already apparent that for the larger spaces, such as the dining room and multi-purpose room, the 3.6m ceiling spans were not sufficient, so new beams and columns were introduced to create wider spaces with double the span, resulting in a width of 7.2m. At this point, the method of showing reused elements in black lines and new material in red on the drawings was established. This allowed for a quicker overview of where reused elements would be located.

Resource: BTU Cottbus Senftenberg

During this design phase, the concept of multiple entrances to the building was developed, so that there is not just one main entrance, but several ways to approach the building, which can activate the building’s surroundings much better.

After another round of feedback from the town of Hohenmölsen, some minor changes were made and terrace roofs were added to the design. In this design, it is now possible to enter and exit the building from all four sides. This allows users to access the site from all sides. In this design, 47 used exterior walls, 7 used interior walls and 56 ceiling slabs are used.

Resource: BTU Cottbus Senftenberg

Some time passed and the town of Hohenmölsen contacted BTU again, stating that the original space plan was not sufficient and that more space was needed. With the experience from the previous designs, a new layout was developed. The new design introduced the idea of a functional block with all building services such as kitchen, toilets, storage, etc., to be placed in the center of the building. This allows all the other rooms where youth activities or office work will take place to receive natural light.

Resource: BTU Cottbus Senftenberg

The downside of this design was that it had a huge footprint of almost 700 m2 due to the increased space requirements. This led to the idea of arranging the spaces on two levels, creating a two-story building. The previous spatial configuration of a service core with a surrounding corridor and entrances on all four sides of the site was retained. Due to the peculiarities of the reused concrete elements and the limited grid size, it was decided that the upper floor would be accessed only by an exterior staircase to simplify the construction and avoid potential fire safety concerns.

Resource: BTU Cottbus Senftenberg

In this final design, 35 exterior walls, 25 interior walls and 103 floor slabs from the donor building will be reused, resulting in a net floor area of 505 m2 on the ground floor and 263 m2 on the upper floor. The new structural elements are initially planned to be new precast concrete elements such as columns and beams. New exterior and interior walls will be made of wood stud walls and ecological insulation such as wood fiber boards. For the facade, the reused exterior walls can be insulated with only 6 cm of wood fiber boards due to the low density concrete they are made of, while the reused interior walls, which will be positioned as new exterior walls, will require 14 cm of insulation. The façade will be a ventilated cladding of reused wood panels and reused corrugated metal, installed as available.

All in all, the design process was challenging, but also interestingly unusual, because the building elements determined many decisions that would otherwise have to be made by the architect or the client. Introducing new elements and rotating the grid in certain places allowed for some flexibility and gave just enough freedom to realize all the required uses in the building. The German ReCreate country cluster hopes to start construction of the youth center in late 2024 or early 2025.

Resource: BTU Cottbus Senftenberg

December 8, 2023

Ahmad Alnajjar, PhD student at KTH

ReCreate project is a forward-thinking initiative that explores the reuse of precast concrete elements from various angles. A key aspect of this project is evaluating the climate benefits from a life cycle perspective. Our recent work, particularly in the Swedish pilot construction, has shown promising results in reducing embodied carbon – a crucial step in sustainable and circular building practices. About 92% of embodied carbon was avoided at the building level which is largely attributed to the reuse of concrete elements, including precast concrete elements. This achievement aligns with previous research highlighting the benefits of reusing precast concrete and further emphasizes the reuse’s effectiveness in mitigating the environmental impact of construction. Unlike most previous studies, the embodied carbon evaluation of the Swedish ReCreate pilot project stands closer to real-world applicability. It is based on field experiments conducted by seasoned professionals in the building sector, adding practical validity and depth to our findings.

An important facet of our findings in the ReCreate project underscores a significant advantage in the reuse of whole precast concrete elements over traditional recycling methods. Through our comprehensive analysis, it has become evident that the embodied carbon savings achieved by reusing entire elements are considerably greater than those realized by merely crushing to recycled concrete aggregate and shredding the rebar to steel scrap. This distinction is crucial, as it highlights the substantial environmental benefits of reusing structures in their complete form. By opting for reuse over recycling, we not only retain the material’s inherent value but also significantly reduce the carbon footprint associated with the production of new building materials.

Our assessment has also brought to light interesting insights. Contrary to common concerns, we found for example that the transportation of reused elements does not significantly add to the project’s carbon footprint, as it is comparable to the transport distances of new building materials. We hope that this finding will encourage building industry actors to reconsider their material sourcing strategies, recognizing that incorporating reused elements can be both environmentally beneficial and logistically viable.

Currently, our team is focused on comprehensively understanding the future availability and demand for pre-used precast concrete elements. We are assessing both the timing of their availability and the quantities that can be effectively reused in new construction projects. By addressing these critical aspects, we aim to elucidate the role that reusing precast concrete elements can play in meeting Sweden’s and the EU’s ambitious climate goals.

Through the ReCreate project, we are exploring new avenues in construction, aiming to make a meaningful contribution to sustainable building practices. Our team is dedicated to not only implementing these innovative practices but also to rigorously documenting and analyzing our findings. Our research will soon be available in various scientific journals, providing a detailed and scholarly overview of our work and its implications for sustainable construction. Keep an eye on our progress as we delve further to uncover the potential and challenges of this innovative approach and look out for our publications to gain a deeper understanding of the impact and scope of our project.

November 13, 2023

Matias Rokio, Tampere University – 13 November 2023

My name is Matias Rokio, and for the year 2023, I’ve been doing research in ReCreate. My background is in industrial engineering and management, and I have been studying since 2017 at Tampere University. I graduated with an M.Sc in June 2023 and wrote my Master’s thesis on resilience in Finnish health care with an emphasis on information asymmetries. My minor in sustainable production steered me towards the areas of sustainability and circular economy, which I feel should receive a lot of attention in research in varied fields. Currently, I am in the process of applying for a doctoral position at Tampere University, which I will hopefully receive sometime during this year. In my personal life, along with my work as a researcher, I am a semi-professional drummer in a few different groups and doing all kinds of session work for different artists.

Currently, I am working at Tampere University in a CROPS research group, which collaborates with ReCreate’s WP7 through my research. According to WP7 objectives, the work package aims to accelerate the development of a scalable and profitable business model for reused precast concrete components in different environments. Especially within the construction industry, the circular economy has tremendous potential in driving a transition towards more sustainable practises, as concrete manufacturing alone generates around 4-8% of the world’s CO2 emissions.

My research article on ReCreate approaches the concrete element reuse from project management’s perspective, with an aim to unveil how applying circular economy principles in projects affects the inter-organisational collaboration and value creation in the project front-end. In my research, the front-end spans the planning phase of the Finnish country pilot, where the deconstruction of an office building in Tampere city centre and the subsequent phases to it were planned in detail. The purpose of the research is to enrich the discussion around sustainable project management and showcase a project where sustainability is promoted through circular economy practises. Also, the circular economy discussion, despite its trending and important nature, is currently still lacking in the project management context, which makes the research interesting for project management scholars.

In the research, we found out that when a construction project is based on the reuse principle, the front-end phase requires more actors to collaborate in the project planning and some actors are required to take on new tasks in the project. For example, a structural engineering company was an integral part of the deconstruction planning of the building, whereas, in a conventional demolition project, the demolition company does the planning by themselves. It is also evident that there are several new business opportunities for the actors involved that could build new services and marketplaces around the reusable concrete elements and reach new customers through collaboration in the project. Currently, several barriers to the wider adoption of concrete elements reuse still remain, as manufacturing new concrete elements is relatively cheap whilst detaching, and refurbishing the old elements is somewhat time-consuming, and a regulative incentive for adopting the reuse principle is lacking.

November 10, 2023

Viktoria Arnold, researcher at BTU Cottbus – Senftenberg, Germany

The assessment of the sustainability of buildings has been increasing rapidly in recent years. This is not only related to the international goals of the United Nations, which are set out in Agenda 2030[1] and include global ecological, economic and socio-cultural aspects in the building sector (SDG 11[2], 12[3] and 13[4]). It is also linked not only, but in large part, to the national goals of the United Nations, which each country has set for itself. Germany, for example, has set a goal of achieving greenhouse gas neutrality in its building stock by 2050[5]. Different countries have different requirement methods. Some countries have made it mandatory to submit a so-called Climate Declaration for future building during the approval phase and to comply with certain limits for greenhouse gas emissions, such as the Netherlands, Sweden and Finland. Other countries, such as Germany, subsidise climate-friendly construction and renovation measures. Some builder-owners are just interested in building sustainably and climate-friendly and want to know what design decisions, building products and materials have what impact on the environment. And what contribution the building as a whole makes to resource and climate protection during its entire life cycle. To find this out, many sustainability assessment systems for buildings are used, which have LCA (Life Cycle Assessment) as one of the most important criteria. The basis for LCA is the EPDs (Environmental Product Declarations) based on ISO 14025 and EN 15804 for the different building products and materials. The more building products and materials have an EPD, the more accurate the calculation of the environmental impact of a building. This will greatly assist the builder-owner when deciding on certain construction and architectural solutions, and what contribution the building as a whole makes to resource and climate protection throughout its complete life cycle.

I am doing my doctorate at BTU on sustainability assessment of single-family houses. For such buildings, which are nowadays a luxury from a climatic point of view, such an assessment is particularly important.

In the ReCreate project, our German Cluster is particularly responsible for work package 6 “Energy and Climate”, which aims to evaluate the environmental and economic impacts (LCA and LCC (Life Cycle Costing)) of the reuse of precast concrete elements. Our major objective is to produce one or more EPDs for the precast concrete elements (ceiling, exterior and interior wall) suitable for reuse. This will enable LCA for new buildings with the reused elements and distinguish such resource and climate-friendly projects from others. Several previous research projects led by Prof. Angelika Mettke[6] have shown that the reuse of concrete building elements can significantly reduce the carbon footprint and energy consumption in the product phase by up to 93-98% compared to new production[7].

We notice again and again in our research that reuse can only be possible if the parts are still considered in the installed condition and the careful disassembly is carried out by an experienced company in the best case. Recently, the new DIN SPEC 91484[8] has been published, which is the basis for evaluating the high-quality connection potential for building products before demolition and renovation works where Prof. Mettke has been involved. Another prerequisite for successful reuse is that the building documents are available and, if possible, up to date. This is rarely the case with existing industrially constructed buildings that are up for deconstruction. That is why today’s initiative on the building resource passport is very important, where all building materials and products used, as well as their quality and recyclability, are recorded and kept up to date. It is also important to look now at what can be used to build more sustainable buildings so that the new building can be reused later at the end of its life cycle.

I am asking all these research questions in my doctoral thesis because it is still not so far that one comes to the idea of building a single-family house from used precast concrete elements.

[1] Sustainable Development Goals

[2] SDG 11 Make cities inclusive, safe, resilient and sustainable

[3] SDG 12 Ensure sustainable consumption and production patterns

[4] SDG 13 Take urgent action to combat climate change and its impacts

[5] Deutsche Nachhaltigkeitsstrategie Weiterentwicklung 2021, p. 103

[6] Structural Recycling Unit, Faculty 2 of Environment and Natural Sciences, BTU Cottbus – Senftenberg

[7] Mettke, A. (2010). Material- und Produktrecycling – am Beispiel von Plattenbauten. Zusammenfassende Arbeit von 66 eigenen Veröffentlichungen, Cottbus, Techn. Univ., Habil.-Schr. p. 235–243

[8] DIN SPEC 91484:2023-09 “Procedures for recording building products as a basis for evaluations of connection use potential prior to demolition and renovation work.”


“This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 958200”.

Follow us: