Swedish cluster Archives | Recreate

December 8, 2023
Ahmad-Alnajjar-KTH.png

Ahmad Alnajjar, PhD student at KTH

ReCreate project is a forward-thinking initiative that explores the reuse of precast concrete elements from various angles. A key aspect of this project is evaluating the climate benefits from a life cycle perspective. Our recent work, particularly in the Swedish pilot construction, has shown promising results in reducing embodied carbon – a crucial step in sustainable and circular building practices. About 92% of embodied carbon was avoided at the building level which is largely attributed to the reuse of concrete elements, including precast concrete elements. This achievement aligns with previous research highlighting the benefits of reusing precast concrete and further emphasizes the reuse’s effectiveness in mitigating the environmental impact of construction. Unlike most previous studies, the embodied carbon evaluation of the Swedish ReCreate pilot project stands closer to real-world applicability. It is based on field experiments conducted by seasoned professionals in the building sector, adding practical validity and depth to our findings.

An important facet of our findings in the ReCreate project underscores a significant advantage in the reuse of whole precast concrete elements over traditional recycling methods. Through our comprehensive analysis, it has become evident that the embodied carbon savings achieved by reusing entire elements are considerably greater than those realized by merely crushing to recycled concrete aggregate and shredding the rebar to steel scrap. This distinction is crucial, as it highlights the substantial environmental benefits of reusing structures in their complete form. By opting for reuse over recycling, we not only retain the material’s inherent value but also significantly reduce the carbon footprint associated with the production of new building materials.

Our assessment has also brought to light interesting insights. Contrary to common concerns, we found for example that the transportation of reused elements does not significantly add to the project’s carbon footprint, as it is comparable to the transport distances of new building materials. We hope that this finding will encourage building industry actors to reconsider their material sourcing strategies, recognizing that incorporating reused elements can be both environmentally beneficial and logistically viable.

Currently, our team is focused on comprehensively understanding the future availability and demand for pre-used precast concrete elements. We are assessing both the timing of their availability and the quantities that can be effectively reused in new construction projects. By addressing these critical aspects, we aim to elucidate the role that reusing precast concrete elements can play in meeting Sweden’s and the EU’s ambitious climate goals.

Through the ReCreate project, we are exploring new avenues in construction, aiming to make a meaningful contribution to sustainable building practices. Our team is dedicated to not only implementing these innovative practices but also to rigorously documenting and analyzing our findings. Our research will soon be available in various scientific journals, providing a detailed and scholarly overview of our work and its implications for sustainable construction. Keep an eye on our progress as we delve further to uncover the potential and challenges of this innovative approach and look out for our publications to gain a deeper understanding of the impact and scope of our project.


September 27, 2023
Arlind-Dervishaj-ReCreate-blogpost-series2.png

Arlind Dervishaj, architect and doctoral researcher at KTH Royal Institute of Technology

The use of digital tools for the design of buildings has become a common practice for architects and engineers alike, commonly referred under the umbrella term digital design. The range of digital tools at our disposal and their utilization has been growing, with reference to Building Information Modelling (BIM), environmental design tools, computational design plugins, and optimization algorithms. Additionally, 3D printing, robotic fabrication, virtual reality, and Artificial Intelligence (AI) are becoming more commonplace not only in research environments but also with practical applications within the architecture and engineering fields. Despite these advancements that have made it easier to design and assess the sustainability of projects, buildings remain a major contributor to climate change, responsible for 37% of global carbon emissions, half of all extracted raw materials, and waste generation due to construction and demolition activities. In light of these challenges, the circular economy concept presents a promising solution, with digital technologies playing a crucial role as enablers.  The importance of reevaluating the relationship between design and the digital became the focus of the 41st eCAADe (Education and Research in Computer-Aided Architectural Design in Europe) conference hosted at TU Graz under the theme Digital Design Reconsidered.

At eCAADe 2023, I presented a refereed paper, with co-authors Arianna Fonsati, José Hernández Vargas, and prof. Kjartan Gudmundsson [1]. The paper is titled Modelling Precast Concrete for a Circular Economy in the Built Environment with subtitle Level of Information Need guidelines for digital design and collaboration. This was also the first presentation in the eCAADe session on BIM & Sustainability. I kicked off my presentation by captivating the audience with striking examples of AI-generated buildings crafted from reclaimed concrete elements, setting the stage for an important question to follow.

Can we design buildings with reused elements simply with a text prompt and AI or is there more to consider?

Before the design process, the practice of reuse involves a series of essential steps, which encompass, among other things, the identification of suitable buildings and components for reuse, the process of deconstruction, the management of storage, and the implementation of quality assurance measures. Reliable and up-to-date information is crucial in supporting designers and stakeholders in making decisions for circular construction. Various data capture methods for buildings exist to facilitate their identification and potential reuse. These methods encompass technologies such as laser scanning, photogrammetry, scan-to-BIM workflows, and machine learning algorithms. Examples of the latter include identifying materials and components at urban and building scales, and some even automate the creation of 3D models from point clouds.

Nevertheless, a substantial gap remains within the literature with relevance for practice concerning the specifics of required data and the process of sharing and requesting information to enable reuse and collaboration of different parties. To address this challenge, we developed a set of digital reuse guidelines tailored specifically for precast concrete. These guidelines are based on the Level of Information Need (LOIN) standard EN 17412-1:2020 [2], and are informed by our experience in the ReCreate project, which includes construction pilots conducted in Sweden (Swedish pilot at the H22 City Expo) and in partner countries. Our study not only embraces the EN 17412 standard but also takes it a step further by extending its applicability for digital reuse in circular construction. These guidelines are designed to enhance the reliability of information across the reuse process and construction cycles. They introduce innovative concepts, such as the creation of digital templates that evolve into digital twins of reused precast elements. Furthermore, they can be used for specifying information requirements for reused as well as for newly produced elements. Additionally, as part of our comprehensive approach, we have included a comparison of the geometrical modelling aspects of LOIN in two widely used CAD and BIM software platforms, Rhino and Revit.

Currently, our ongoing research within the ReCreate project continues to explore and expand upon various aspects that can relate to the LOIN framework. As an example, another recent paper authored by me, José, and Kjartan was presented at the 2023 EC3 & 40th CIB W78 conference in Crete, Greece [3]. This paper explores the timely theme of tracking and tracing building elements, where more background information can be found in the literature [4], [5]. We present a novel digital workflow for modelling various tracking tags in the BIM model such as QR codes, Radio Frequency Identification (RFID), and Bluetooth. Moreover, we present promising results from laboratory tests that, arguably for the first time, explore the utilization of Near Field Communication (NFC), which is a subset of RFID, and its integration with Bluetooth technology.

More facets on the topic of reuse are being investigated within ReCreate that will further demonstrate the applicability and potential of digital reuse in creating a circular built environment. Our research encompasses a wide spectrum of considerations, including data capture and sharing methods, material passports, destructive and non-destructive testing of concrete structures, and innovations in the design processes. These ongoing efforts aim to advance sustainability and circularity in the built environment through the integration of digital technologies.

References:

[1] A. Dervishaj, A. Fonsati, J. Hernández Vargas, and K. Gudmundsson, “Modelling Precast Concrete for a Circular Economy in the Built Environment,” in Digital Design Reconsidered – Proceedings of the 41st Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2023), W. Dokonal, Hirschberg Urs, and G. Wurzer, Eds., Graz: eCAADe, TU Graz, Sep. 2023, pp. 177–186. doi: 10.52842/conf.ecaade.2023.2.177.

[2] European Committee for Standardization (CEN), “Building Information Modelling – Level of Information Need – Part 1: Concepts and principles (EN 17412-1:2020),” 2020 Accessed: May 18, 2022. [Online]. Available: https://www.sis.se/en/produkter/standardization/technical-drawings/construction-drawings/ss-en-17412-12020/

[3] A. Dervishaj, J. Hernández Vargas, and K. Gudmundsson, “Enabling reuse of prefabricated concrete components through multiple tracking technologies and digital twins,” in European Conference on Computing in Construction and the 40th International CIB W78 Conference, Heraklion: European Council on Computing in Construction, Jul. 2023, pp. 1–8. doi: 10.35490/EC3.2023.220.

[4] M. Jansen et al., “Current approaches to the digital product passport for a circular economy: an overview of projects and initiatives,” vol. 198, 2022, doi: 10.48506/OPUS-8042.

[5] European Commission, “Transition pathway for Construction.” Accessed: Mar. 17, 2023. [Online]. Available: https://ec.europa.eu/docsroom/documents/53854





EU FUNDING

“This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 958200”.

Follow us: