Blog posts - Recreate

January 15, 2025
Eric-Rawlins-–-kopija-1.png

Arlind Dervishaj, KTH

Concrete is used everywhere—in buildings, cities, and infrastructures. However, due to the large quantities of concrete used worldwide, it contributes to around 8% of global CO2 emissions [1]. While efforts are being made to reduce its carbon footprint, such as by using supplementary cementitious materials, an often overlooked solution is reusing concrete.

The ReCreate project aims to foster a circular economy in the construction industry by reusing precast concrete elements from existing buildings in new construction projects. To support this goal, our study investigated the reuse potential of structural concrete elements, evaluating three key factors: the remaining lifespan of concrete, natural carbonation (ability to reabsorb CO2 over time), and embodied carbon savings achieved by reusing it [2]. Reusing concrete has multiple benefits as it prevents waste, reduces the need for new raw materials, and significantly lowers life cycle CO₂ emissions. However, it is not as straightforward as it looks. The structural integrity of concrete with reinforcing steel can be compromised over the lifetime of buildings, if the right conditions for corrosion emerge, such as from the carbonation of the concrete cover and the presence of moisture at the rebar interface [3].

Circular Construction concept for concrete

Based on established carbonation models, we proposed a digital approach for estimating the remaining service life of concrete elements. The digital workflow also estimates the CO2 uptake from natural carbonation. We tested the workflow on an apartment building with a precast concrete structure, built in Sweden in 1967 during the Million Program. The building was modelled digitally, and material quantities and exposed surface areas of concrete elements were automatically extracted.

Digital workflow and building model

A key aspect of the study was the comparison of carbonation rates specified in the European standard EN 16757:2022 with rates derived from measurements in the ReCreate project and the literature [4,5]. This comparison revealed that the carbonation rates in EN 16757 may be overly conservative and hinder the reuse of concrete elements. We argue that relying on contextual carbonation rates, such as the ones in our evaluation, from a previous condition assessment, and new on-site measurements, is crucial for making informed decisions about concrete reuse. The study also addresses the recent RILEM recommendation on revising carbonation rates in standards like EN 16757 and CEN/TR 17310:2019 [6]. 

Using carbonation rates from EN 16757:2022, led to the conclusion that most of the precast elements would not be reusable (i.e. carbonated concrete cover and past the initiation phase for service life). The standard assumes a high rate of carbonation for concrete, especially indoors, which reduced the concrete’s remaining service life; concrete cover for indoor elements was expected to carbonate the earliest, 23 years after initial construction. However, when using the contextual carbonation rates derived from the ReCreate project’s investigation and recent literature, all elements were deemed suitable for reuse, with sufficient remaining lifespan. Plaster and other coverings slowed carbonation significantly, extending the service life of concrete. Additionally, carbonated concrete elements can be reused, but further considerations should be made concerning the environment and exposure conditions in the new building. Recommendations from ongoing research in ReCreate are expected for concrete reuse in new buildings.

The study also assessed the CO2 uptake of concrete over its life cycle, including the first service life, a potential storage period prior to reuse, and a second service life when reusing precast elements. The findings indicate that the CO2 uptake estimated using the EN 16757 rates was significantly higher than the estimate based on contextual rates. Additionally, the study demonstrated that the climate benefits of reuse exceeded those of carbonation, which accounted for less than 6% compared to the emissions associated with the production and construction of new precast concrete buildings. This highlights the importance of prioritizing reuse as a key strategy for reducing the climate impact of buildings.

Furthermore, the study investigated the implications of three different allocation methods for assessing the embodied carbon of concrete over two life cycles. The analysis included scenarios with and without carbonation uptake. The results indicated that the Cut-Off method was the most advantageous for reusing the existing building stock, followed by the Distributed approach, while the End-of-Life approach was the least favorable. The study emphasizes that the reuse of existing building stock offers a substantial opportunity for mitigating climate change and fostering a circular built environment.

Comparison of three LCA allocations, over two life cycles

References

[1] Monteiro PJM, Miller SA, Horvath A. Towards sustainable concrete. Nat Mater 2017;16:698–9. https://doi.org/10.1038/nmat4930. 

[2] Dervishaj A, Malmqvist T, Silfwerbrand J, Gudmundsson K. A digital workflow for assessing lifespan, carbonation, and embodied carbon of reusing concrete in buildings. Journal of Building Engineering 2024;96:110536. https://doi.org/10.1016/j.jobe.2024.110536. 

[3] Angst U, Moro F, Geiker M, Kessler S, Beushausen H, Andrade C, et al. Corrosion of steel in carbonated concrete: mechanisms, practical experience, and research priorities – a critical review by RILEM TC 281-CCC. RILEM Technical Letters 2020;5:85–100. https://doi.org/10.21809/rilemtechlett.2020.127. 

[4] European Committee for Standardization (CEN). Sustainability of construction works – Environmental product declarations – Product Category Rules for concrete and concrete elements (EN 16757:2022) 2022. https://www.sis.se/en/produkter/construction-materials-and-building/construction-materials/concrete-and-concrete-products/ss-en-167572022/ (accessed November 26, 2023). 

[5] European Committee for Standardization (CEN). Carbonation and CO2 uptake in concrete (CEN/TR 17310:2019) 2019. https://www.sis.se/en/produkter/construction-materials-and-building/construction-materials/concrete-and-concrete-products/sis-centr-173102019/ (accessed September 26, 2022). 

[6] Bernal SA, Dhandapani Y, Elakneswaran Y, Gluth GJG, Gruyaert E, Juenger MCG, et al. Report of RILEM TC 281-CCC: A critical review of the standardised testing methods to determine carbonation resistance of concrete. Mater Struct 2024;57:173. https://doi.org/10.1617/s11527-024-02424-9.


January 8, 2025
Eric-Rawlins.png

An essay on a circular design by the Principal of LIIKE Oy Arkkitehtistudio, Eric Rawlins.

I recently posted a graph on social media displaying the percentage of recycled material used in construction across EU member states. Finland places second but last, with only Romania reusing less material in construction. Reactions were astounding, ranging from questioning the graphs’ depiction to demands to clarify what are the materials in question at all, to claims that circularity is a fringe issue since it isn’t linear, to how spot on this finding is, and how high a mountain we have to climb.

Finns are pragmatic, focusing often – pardon the pun – on concrete solutions rather than philosophical debates. To paraphrase Mies van der Rohe, “getting things done” is crucial, whereas pondering is not quite so.

Albeit that the ReCreate project is focused on technology, the practice of “getting things done”, in this case how to integrate refurbished materials into a linear practice, might be considered less of an end. After all, even at its most utilitarian construction is always a means to another end. While construction processes are often viewed as self-orienting, there are ultimately merely an end to a larger purpose. Subsequently, buildings are designed by architects for the purpose at hand, less than the construction technique available.

This forces us to consider what exactly are we attempting to achieve with the buildings we build, and why is a particular purpose justified, particularly in a circular future. If by definition we are motivated by a low-carbon world and premised by the availability of reusable material(s), should we not consider how necessary construction is in the first place? And then which purposes, solutions and outcomes can be considered acceptable?

Anticipating these changes suggests a transformation where architecture evolves from a service to a deeply analytical and creative act, subscribing value, creating purpose, and resolving outcomes within material constraints. The need to transition to a circular economy emerges from a century of change, pushing us to move away from 20th-century models and technologies. To relinquish what was, in favour of what should be.

ReCreate already indicates that partners and stakeholders are becoming increasingly aware of reuse as a viable and realistic solution for a sustainable future. Not to perhaps entirely replace the linear world, but offer a complimentary path. As communities grow increasingly aware of the environmental impacts of post-war growth, the integration of reused materials in construction is beginning to show as a route to the future. One increasingly resonates with younger generations less inclined to believe in the world views of post-war extractive regimes.

This paradigm shift also suggests a reinvention of design, building, financing, and regulatory practices, presenting opportunities in fields beyond the construction sector. Where traditionally people see waste, we see the literal and conceptual foundation for a shift in societal values, business models and design practices. Reusing precast concrete elements might not represent a leap for mankind, but it does represent a significant step towards circularity in construction.

Our preparatory design studies navigate some of the constraints and possibilities presented by the selection of concrete elements and structures, retrieved from the Finnish deconstruction pilot. The emphasis is to study how to create an architectural solution to a given layout, which remains as faithful as possible to an original new build solution. Even in early studies, we have identified promising design strategies aimed to explicitly display the refurbished elements, as well as defined lines of study regarding potential hybrid structures, which may lead to real-life solutions that most likely would not be considered otherwise.

Our aim is to use the constraint-driven condition to establish an architectural language that will visibly express the ethos of reuse and sustainability, and encourage a dialogue between the old and the new, where our pilot building tells a story of continuity and renewal.

While it is said that history does not repeat, it merely rhymes, one is tempted to see similarities between today’s world and the world of the avant-garde. Transitioning to circularity is a phase change. If history is any measure, employing deconstructed material is a new practice which will manifest as a reinterpretation of architecture. Just as in the early 20th century, societal and technological evolution manifested in the work of Le Corbusier, Mies van der Rohe and Alvar Aalto resulting in a new architecture as a concrete outcome, a societal construct and a value expression, it would only seem only logical to expect something similar from the Green Transition.

In this case the use of refurbished concrete represents more than a technical solution to environmental challenges—it becomes a manifesto for societal change, literally embodied in the structures we inhabit. By reevaluating how we build and what materials we use, we can instigate a profound shift in values, business practices, and architectural design.

Our take on circularity in construction is one where, respecting what we have, our maxim becomes: Function Adapts to Form. To quote Alvar Aalto:

“Nothing old is born again. But it doesn’t go away completely either. And what once was will always be again in a new form.”

Eric Rawlins

Architect

Principal

LIIKE Oy Arkkitehtistudio

Figure caption: Reusing building material from the existing stock is first and foremost an opportunity. (Photo: Tampere University / Heikki Vuorinen)


November 22, 2024
Jakob-Fischer.png

Jakob Fischer, Brandenburg University of Technology

As Europe strives to meet its sustainability targets, the construction industry’s environmental impact is under increasing scrutiny. The sector is responsible for a significant portion of Europe’s resource consumption and waste generation. A key solution lies in evaluating building stock for its potential to contribute to circular economy practices, particularly through the reuse of construction materials like prefabricated concrete components. By reducing waste and conserving resources, this approach can help achieve the European Union’s (EU) climate and sustainability goals.

Europe’s Sustainability Goals and the Construction Industry

The European Union has committed to several ambitious targets, primarily through the Sustainable Development Goals (SDGs), including Goal 9 (Industry, Innovation, and Infrastructure), Goal 11 (Sustainable Cities and Communities), and Goal 13 (Climate Action). These goals promote building resilient infrastructure, reducing waste in urban environments, and taking urgent action on climate change.

In parallel, European policies such as the Circular Economy Package, the EU Waste Hierarchy, and the European Green Deal aim to curb resource extraction and promote material reuse. The building construction industry, as one of the largest consumers of resources and generators of waste, is central to these efforts. By recovering reusable concrete elements from existing structures, the sector can reduce its carbon footprint and contribute to Europe’s climate neutrality goal by 2050. The ReCreate project is developing numerous implementations to achieve these contribution goals.

Assessing Building Stock for Reuse

Evaluating building stock involves analyzing existing structures to identify materials that can be reused in new construction projects. This is especially important as Europe’s built environment contains vast amounts of materials, particularly concrete, that can be repurposed instead of discarded. The work package 1 of the ReCreate project is developing an analysis and mapping of existing precast concrete systems and elements.

Prefabricated concrete components, which are common in many buildings, offer substantial potential for reuse. These modular elements can be removed, inspected, and repurposed in new projects, reducing the need for energy-intensive production of new materials. Since concrete production is responsible for a large share of carbon emissions, reusing elements as a whole can significantly lower the environmental impact of the construction industry. Emission reductions of up to 98 % in comparison to virgin material prefabricated concrete elements, can be saved by reusing existing elements.

Urban Mining and the Circular Economy

Urban mining is a key element in transitioning towards a circular economy, where resources are reused rather than discarded. Buildings, especially those built in the mid-20th century, contain prefabricated concrete components that are still in good condition and suitable for reuse. Rather than allowing these materials to become waste, urban mining enables their recovery, helping reduce construction and demolition waste (C&DW).

C&DW represents nearly 40% of the total waste produced in the EU, underscoring the pressing need for robust waste management strategies. By reusing concrete elements as a whole the construction industry can contribute to a significant reduction in CO2 emissions. With concrete production accounting for up to 8% of global carbon emissions, any reduction in its demand has a meaningful impact on climate change mitigation.

Overcoming Challenges in Building Stock Evaluation

While the reuse of building components offers significant sustainability benefits, several challenges remain. On the one hand the structural and architectural integrity of reusable concrete elements have been testified and is being proven within the ReCereate project, however no market for reused elements has been developed yet, which could satisfy the demand of sustainable re-construction. Hence, the working packages 1 and 6 with the deliverable 6.2 will give an overview of the distribution and amount of defined elements in the existing building stock.

Another challenge is to evaluate the needed information for exact types of elements in existing buildings from national building stock databases. With the support of building owners (e.g. providing information on their building stock), reviewing literature and archives on construction/production activities in the past and assessing the current and future demolition rate, a more accurate assessment of the building stock will be investigated.

A centralized database tracking reusable materials across Europe could further enhance urban mining efforts. By cataloging the types, quantities, and conditions of reusable components, such a system would allow construction companies to plan projects more efficiently, ensuring that recovered materials are utilized effectively. Parts of these efforts will be achieved within ReCreate.

Conclusion

The systematic evaluation of building stock and the adoption of urban mining practices can contribute significantly to Europe’s sustainability efforts. Reusing materials like concrete supports SDG 9 by promoting resource-efficient infrastructure. It also aligns with SDG 11 by reducing urban waste and improving resource management, while contributing to SDG 13 by helping reduce the carbon emissions associated with new construction.

Achieving this requires collaboration between policymakers, industry professionals, and researchers. Governments can implement the regulatory frameworks and incentives needed to make reuse the norm, while construction professionals must adopt new approaches that prioritize resource recovery. Also building owners should be sensitized, to regularly evaluate their building stock, keeping track of their own ‘urban mine’ and step forward to interested planners and stakeholder in the construction industry with their upcoming potential of deconstructable and reusable concrete elements.

The future of Europe’s construction industry is circular, and evaluating building stock is a key step in realizing this transformation.


October 18, 2024
Arnaldur-Bragi-Jakobsson.png

Arnaldur Bragi Jakobsson

Second Wind explores the potential of reusing pre-cast concrete elements from an obsolete apartment building in Helsingborg, Skåne County, Sweden.

As part of the ReCreate initiative, which encourages the sustainable repurposing of concrete components, I collaborated with Helsingborgshem, the city’s municipal housing company, to develop a new rowhouse typology of approximately 100 m², alongside a two-story multifamily apartment building on the same plot.
The project aimed to minimize modifications to the existing structural components, preserving their original form as much as possible while adapting them to new uses. The rowhouses, arranged in an L-shape with a southwest-facing courtyard, serve as rental units and highlight the potential of reused materials in creating modern, functional spaces. The apartment buildings, located on the north and south sides of the site, further demonstrate the versatility of these repurposed elements.

 

Throughout this process, I sought to maintain a connection to the original architectural context of the Drottninghög area, respecting its mid-20th-century character while introducing new, sustainable housing solutions. This project illustrates the significant environmental benefits and creative opportunities in reusing existing building materials, paving the way for more sustainable construction practices.

 

Rowhouse plan (Arnaldur Bragi Jakobsson)


September 27, 2024
Lauri-Akki-Linnea-Harala.png

Written by Linnea Harala & Lauri Alkki

The ReCreate pilot projects in Finland, Sweden, Germany and the Netherlands highlight diverse approaches to implementing concrete element reuse, each influenced by unique building types, contexts and organizational structures. An initial analysis by ReCreate’s business research work package (WP7) has revealed distinct patterns in these approaches, primarily categorized into centralized and decentralized models. During the ReCreate annual meeting in Zagreb, WP7 also organized a workshop to present the identified approaches to other project partners and to get feedback on the initial analysis.

 

Figure 1 & 2. Workshop between ReCreate partners at the annual meeting in Zagreb on the preliminary results of the two different approaches.

The identified approaches – A) centralized & B) decentralized

The centralized approach is characterized by a single key actor managing multiple phases of deconstruction and reuse. This model is most prominent in the Netherlands. There, the same actor is responsible for deconstructing a building and reusing most of its elements in a new structure, a process referred to as 1-on-1 reuse. The ecosystem in a centralized model is simple, with a central hub managing all operations. The key actor controls the flow of information and data mostly internally, ensuring streamlined communication and decision-making. In addition, the key actor’s business model extends to both deconstruction and reuse, highlighting its capabilities and resources. A strong single actor can oversee the entire project, facilitating optimized and controlled execution. With one key actor at the helm, there is a clearer distribution of tasks and responsibilities. On the other hand, success depends heavily on the performance and capabilities of the key actor.

Conversely, the decentralized approach involves multiple specialized actors managing different phases of deconstruction and reuse. This model is evident in Finland and Sweden, where elements are harvested and reused in various buildings. The ecosystem in the decentralized approach consists of several specialized, complementary companies and organizations. Therefore, effective communication and data sharing between these actors has been identified as a critical factor for success. In the decentralized approach, each actor operates based on its expertise and specialization, contributing to a more diversified and flexible business landscape. The feasibility of the decentralized model depends on how well the project organization coordinates multiple companies. This complexity requires robust inter-organizational collaboration to ensure smooth transitions between phases, as multiple actors require more discussion to define responsibilities at different stages, at least initially.

Overall, it can be seen that in the centralized approach, the control of the dominant key actor can streamline operations, but it relies heavily on this actor’s capabilities. On the other hand, the decentralized approach, while more complex, offers flexibility and the potential to leverage a wider range of expertise. In both approaches, the work phases and tasks are largely the same, but their overlap and sequence may vary. Ultimately, understanding these approaches allows for better strategic decisions throughout the concrete element reuse process, promoting more sustainable and efficient construction practices.


August 30, 2024
Kjartan-Gudmundsson_WP3-1-1280x670.png

Lina Brülls, Graduate Architect and Master’s Student in the Computer Science Program at Chalmers University of Technology

The master’s thesis “Resource-Driven Design” explores how the design process can be adapted to facilitate the reuse of structural concrete elements. Research done in the thesis indicates that current design and data processes are not easily translatable to reuse scenarios, where preexisting structural and geometrical attributes of materials must be considered. Based on this, three key research questions are formulated: identifying the necessary data for the reuse design process, developing a Grasshopper Rhino plugin for data integration, and applying this tool in case projects with the aim of optimising reuse.

The developed Grasshopper plugin, programmed in C#, enables data handling from Excel into Rhino. It generates structural modules from reused hollow-core and load-bearing wall elements based on desired design parameters. The tool was tested in three architectural projects on Siriusgatan in Bergsjön. Regular consultations with the ReCreate team at KTH provided helpful expertise and feedback throughout the development process.

The study’s findings suggest that integrating data early in the design process can improve the efficiency and feasibility of reusing structural elements. One key challenge encountered in this project was planning within the constraints of the generated load-bearing modules. Including glulam beams introduced necessary flexibility, enabling adjustments in level height and allowing the removal of some load-bearing wall elements.


August 9, 2024
Tommi-Halonen-1-1280x670.png

Tommi Halonen, project manager, City of Tampere, Finland

Sometimes I get asked: ‘Why is the City of Tampere participating in ReCreate, and what is our role in the project?’ It might be much easier to see why a university or a construction company is taking a part in a project where the goal is to (de)construct buildings in a novel way. But what is the city doing in ReCreate, especially when the deconstruction pilot was not a public building? From my viewpoint, cities have in particular the following two roles to play in the circular transformation:

Role 1: developing public processes that enable the implementation of CE solutions.

First, cities have a significant role as regulators in the construction industry. If there are any issues related to public regulation that do not allow reuse or make it extremely bureaucratic, it is impossible or very difficult (or expensive) to create business out of ReCreate or any other circular solution. There are especially two matters that are regulated by the city authorities that are worth paying attention to: (1) implications of waste legislation and (2) product approval practices.

(1) During the ReCreate project, we’ve had multi-stakeholder discourse in Finland about whether reused building parts should be considered as waste or not – some stakeholders opposed, and some supported the waste status. However, at the end, it is the city officers that control the matter and they needed to decide how to proceed with it. I cannot go through all the matters the authorities needed to consider in order to clarify the issue but in brief, the hardest part was to find a balance between environmental protection and excessive (too heavy) bureaucracy. Eventually the authorities were able to clarify their policies so that, in Finland, reused components are not considered as waste when certain pre-requisites are fulfilled. At the time of writing this blog, we’ve also received an official decision that ReCreate elements are not considered as waste. This is a huge development step in the Finnish industry towards circularity.

(2) Another matter the cities regulate is the product approval of reused building components. Unlike new products, the CE (conformité européenne) mark does not apply to reused products. In Finland, the products are approved as part of a so called ‘building site approval process’ that is regulated by the municipal building supervisors. There is no prior experience of the approval process. Consequently, the situation is now very similar to the aforementioned case: city authorities must again develop practices and policies that ensure that essential technical requirements are met when reusing components but are not too burdensome for practitioners to comply with. As I write this blog, we are in the process of discussing these practices with the authorities.

Role 2: creating needed incentives for companies for CE development.

Cities are not only passively enabling the circular transformation, but they can – and they must – actively initiate the change, too. Indeed, me and my colleagues have received feedback from multiple companies stating that due to early stage of the circular development, the industry cannot move to circularity solely with the help of market drivers and market logic. The companies emphasized the need for public initiatives that create incentives for circular development. Cities have at their disposal policy instrument that can create this market push. The most notable instruments are (1) public procurements and (2) plot handovers.

(1) During the project, we have had multiple meetings and workshops with the leaders of the city so that Tampere could incorporate reuse to future procurements and building projects. Sooner or later, reuse of building components will break through to public procurements and when it does, it will have a significant impact on the market.

(2) Another policy instrument that can initiate change is the plot handover process. In Finland, municipalities are the biggest landowners in urban areas. Traditionally, sustainability or circularity goals have not been part of the handover processes. However, in 2022 the City of Tampere initiated an all-time first circular plot competition. It was a success with nearly 20 building proposals and applications and received a lot of positive attention in general as well as in professional media. Many cities got inspired and wanted to repeat the circular competition. What we decided to do with my colleagues was to launch a working group, the goal of which was to create upgraded and unified circular criteria for the municipalities. Around 30 experts worked on the criteria for a year, and after receiving feedback in different workshops and seminars, we were able publicize the criteria at the beginning of this year. Now, we are keen to see the impact that the criteria will create when the cities are starting to include them to their plot handovers and competitions.

All in all, while this blog is not an exhaustive list of all the role the cities have in the circular transformation, I do hope that I was able make the case that cities are one of the major players enabling the transition. Indeed, for me personally, it is very difficult to see how the industry could make the transition to the circular economy on a large scale if the cities are not developing public policies and processes to promote circularity.

 


August 2, 2024
Dizajn-bez-naslova-47.png

Lagemaat at TU/e (in collaboration with the Dutch cluster)

As part of the international @ReCreate project, we are working closely with various partners, including the Dutch cluster. This month, the Eindhoven University of Technology (TU/e) will conduct further research at our site to test concrete elements from the Prinsenhof pilot project. This research helps us understand the impact of weather conditions on the stored elements in Heerde. The materials from the Prinsenhof project will thus find a new purpose at the Circular Center in Heerde.

An important aspect of our collaboration with TU/e is testing various concrete elements for their reusability, enabling their circular application. In a recent vlog, Marcel Vullings (TNO) and Fred Mudge (TU/e student) share their findings from these tests. They investigate how concrete parts can be dismantled and what new applications are possible in future projects.

These tests are crucial for the progress towards a circular construction sector. By reusing concrete elements, we save on new raw materials and reduce tons of CO2 emissions. The collected data forms the basis for future projects.

Examples of projects that strongly focus on material reuse include the Zuiderstrandtheater in Scheveningen and the Ruijgoordweg 80 project in Amsterdam. Through this approach, we continue to innovate and contribute to a sustainable construction industry.


figure9-1280x717.png

Project and industry partners involved:

BTU Cottbus-Senftenberg: Prof. Dr. Angelika Mettke, Viktoria Arnold, Jakob Fischer, Christoph Henschel,
Sevgi Yanilmaz, Anton Leo Götz

IB Jähne: Peter Jähne, Milena Zollner

ECOSOIL OST: Dietmar Gottschling, Bernd Mathen, Jens Muschik, u.a.

Figure 1 – 3D Model of the test building (Source: BTU)

The objective for the test construction was to generate findings on the practicability of the construction method by reusing precast-reinforced concrete elements. The reassembly and disassembly of the test building was carried out by and in cooperation with the German ReCreate industry partner ECOSOIL. In particular, the combination of used reinforced concrete elements with timber stud walls was to be tested, as well as the new steel connectors developed as part of WP5. A new filling mortar was tested for its applicability to form the butt joints between the precast concrete elements.

Figure 2 – Donor Building Type WBS70-C before deconstruction (Source: BTU)

The donor building for the test building was a five-story WBS 70-C apartment block on Karl-Marx-Straße in the small town of Großräschen in Brandenburg. A partial demolition was carried out here as part of a refurbishment project, in which the upper 2 or 3 stories were deconstructed. From the deconstruction mass, 12 precast concrete elements were transferred to Cottbus for the test building: 3 exterior wall panels, 6 interior wall panels and 3 ceiling panels (see Fig. 3) after they had been selected and marked in the installed state.
The element-oriented deconstruction began in November 2023 and was completed at the end of February 2024. The dismantled precast reinforced concrete elements were stored on the construction site in Großräschen for another month before being transported the approx. 40 km to Cottbus in April 2024.

Figure 3 – Overview of elements needed for the test building (Source: BTU)

Figure 4 – Floor plan of the test building (Source: BTU)

When designing the test set-up, an attempt was made to reproduce as many different element connection situations as possible. These include corner connections between two concrete elements or between a concrete element and a timber stud wall (corner connector), longitudinal connections between two concrete elements (longitudinal connector) or the centred connection of a concrete wall element with a concrete element installed at right angles (T-connector) – see Fig. 5 and 6.

The newly developed connectors are made of 8 mm thick flat steel and are attached to the top of the wall elements with concrete screws. The connectors can be fixed in both concrete and wood and are therefore very suitable for combining these two building materials. The steel connectors mounted on the top can be embedded in the mortar bed required for the ceiling elements anyway, so that they do not present any structural obstacle and are also protected against the effects of fire and corrosion.

Figure 5 – 3D Models of the newly developed connectors (Source: BTU)

Figure 6 – Placement of the steel connectors in the test building (Source: BTU)

In addition, the design concept of the test building was planned in such a way that a wall element and a ceiling element were to be cut to size in order to test the effort involved in sawing the concrete and whether the cut precast concrete elements could be used as intended.

The former airfield in Cottbus, which had been decommissioned for several years, was chosen as the location for the test building. There was sufficient space, a load-bearing concrete slab as a base and a suitable access road for the delivery of the reinforced concrete elements.

In March 2024, work began on the production of the timber stud walls and the setting of the masonry calibrating layer to prepare the construction site for the installation of the concrete elements. The used concrete elements were delivered to the construction site on April 18 and 19 and stored in the immediate vicinity of the test building. They were professionally reassembled within two days. Each wall element was placed on the calibrating layer (see Fig. 7, center), leveled and secured using mounting braces (see Fig. 7). The elements were joined together using the above-mentioned flat steel connectors. The use of the innovative SysCompound joint mortar (based on fly ash and recycled aggregate) was tested for the butt joints between the concrete elements. Various formulations for the SysCompound were developed and tested in the laboratory in advance. The bond between the old concrete and the fresh joint mortar was of particular interest. In this respect, not only the mortar strength played a role, but also the shrinkage behavior of SysCompound in comparison to commercially available joint mortar mixtures.

Figure 7 – construction process of the test building (Source: BTU)

Figure 8 – construction process of the test building (Source: BTU)

The assembly of the test construction went smoothly and quickly (see Fig. 8) so a positive conclusion can be drawn for future pilot projects. The flat steel connectors have proven successful due to their simple fastening by means of screws (assembly) and disassembly; the combination of reinforced concrete and timber stud wall elements has proven to be practicable and the sawn concrete elements could be reassembled without any problems.
From a planning point of view, it is recommended that larger dimensional tolerances of the concrete elements be taken into account, as the actual geometric dimensions sometimes deviate from the planning and the edge zones of the dismantled concrete elements are no longer level in some cases. Concrete sawing work is known to be feasible but should be reduced to a minimum due to the high costs and energy required. When filling the joints, it turned out that due to unevenness or broken edges and corners of the concrete elements – as explained above – significantly more grout was required in some cases than assumed in the planning.

Figure 9 – Aerial view of the test building after completion (Source: C. Busse + S. Karas)

Overall, the test construction on the former airfield site in Cottbus was a complete success. The BTU team would like to take this opportunity to thank the landlord DLR for the space used, the skilled workers from ECOSOIL and the logistics service provider Auto Klug. Without the cooperation of the aforementioned parties, the realization of the construction project in this form would not have been possible. In mid-May 2024, the test building was dismantled/disassembled again and transported away for temporary storage at a recycling yard 42 km away. If the used concrete elements are not requested as components for reuse, they will be recycled and are therefore still available through material recycling.


June 20, 2024
Antti-Lantta-.png

Antti Lantta, project manager (building demolition), Umacon & Juha Rämö, technology director, Consolis Parma

The earth’s carrying capacity is being tested, and it cannot sustain the growing use of virgin natural resources on the scale required by the current economic and population growth. The most acute environmental damage of our time results from global warming and the loss of biodiversity.

The built environment is of great importance for an ecologically sustainable society, as the construction sector globally consumes about half of all the world’s raw materials and causes about a third of greenhouse gas emissions. From the perspective of a circular economy, there is a huge potential here.

This includes the EU-funded four-year international research project ReCreate (Reusing prefabricated concrete for a circular economy), which studies the reuse of concrete elements, which are deconstructed from buildings slated for demolition, in new construction. Umacon, a top demolition expert, and Consolis Parma, Finland’s leading manufacturer of precast concrete elements, are also involved in the research project.

Umacon renews demolition industry in Finland

The prevailing demolition method in Finland focuses on material recovery, where the secondary raw material materials created through demolition are used in the recycled or otherwise utilized, for example in earthworks. Reusing whole precast concrete elements is rare, even though valuable building parts and equipment, such as building services components, industrial machinery and steel or wooden columns and beams, have been salvaged in Finland in the past. Until now, deconstruction has been driven more by the resale value of building components and equipment than the goal to reduce carbon dioxide emissions.

The reuse of precast concrete elements has not been implemented on a larger scale in Finland before. For Umacon, environmentally friendly and sustainable construction is part of its business values, so applying for the ReCreate research project was a natural choice. The work phases of the deconstruction project had to be planned in a new way so that the elements would not be damaged during the deconstruction work. During the project, new working methods and methods for detaching and lifting elements were developed to ensure that the deconstruction takes place safely and efficiently. Efficient working methods were refined as the project progressed. For example, it took four weeks to deconstruct the elements of the topmost floor, but the last floor was completed in just five working days! The key to a successful project was combining an array of different working methods that had been tried and tested in previous demolition projects into a functional deconstruction process.

Umacon wants to renew the demolition industry in Finland and become a leading company in the deconstruction sector. The success of the ReCreate research project shows that deconstructing precast concrete elements as intact is technically possible. By steering legislation towards low-carbon construction and improving the productivity of deconstruction, deconstruction will mainstream in Finland. Deconstruction and construction are teamwork that require the cooperation of all parties to achieve the goals.

New business for element manufacturer Consolis Parma

Consolis Group is committed to the targets set out in the Science Based Targets initiative. The Group’s global goal is to achieve zero emissions by 2050. The Finnish Consolis company Parma aims to reduce emissions by five per cent annually and halve them by 2035. The most significant means for reducing emissions are the increased use of low-carbon concrete elements, energy efficiency, and the circular economy.

Parma’s low-carbon products are based on substituting cement with binders from industrial side streams. In addition, crushed concrete is utilised in place of virgin aggregates. In the future, one possibility is to supply fully recyclable elements alongside new low-carbon concrete elements.

In the ReCreate research project, the reuse of whole elements is focused on in real life. The elements salvaged from the donor building in Tampere have been delivered to Parma’s Kangasala factory, where they undergo a quality check as well as the necessary modifications and equipment for reuse. The elements that have now been reclaimed were originally manufactured at the company’s factory in Ylöjärvi, Finland, and thus Parma is involved in a research project to promote the reuse of the elements it has manufactured itself.

In this kind of new business, the role of an element manufacturer may include, for example, design, quality control, dimensional changes and equipment, as well as other functions that are suitable to perform alongside new production at the precast concrete factory. Issues to be studied that deviate from new production include approvals, processes and logistics (deconstruction of elements, transfer to the factory, factory-refurbishment measures, transfer of elements to a new site and installation of elements) and environmental permit practices.





EU FUNDING

“This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 958200”.

Follow us: