ReCreate project, Author at Recreate

April 19, 2024
Paul-Jonker-Hoffren.png

We are privileged to continue our interview series featuring the talented individuals behind the ReCreate project. In this edition, we showcase Paul Jonker-Hoffrén, who focuses on policy issues related to circularity in construction and labor market.

Can you introduce yourself a bit, and tell us about your background and role in your institution and the project?

I’m originally Dutch, but I’m living in Finland. I have a background from the Netherlands in public administration and public policy research. It involves policy analysis studies and a bit of law in economics and sociology. However, until this project, I did not deal with it professionally. In Finland, I got my doctorate in labour sociology. In Finland, I’m working on labour market issues in labour market relations issues, such as relating to self-employment, the possession of labour unions etc. ReCreate Project to me is an opportunity to combine public administration and public policy research with labour market issues. In this project, I can focus on the policy aspects of circularity in construction as well as labour market issues. In my Work Package, we study work processes and the skills needed in the future to maintain the labour market for construction.

Can you provide an overview of your Work Package, its objectives and why are policy support and social acceptance important for reused precast concrete components?

My Work Package has two distinct things. The first one is about policy regarding circularity in construction and how those policies relate to legislation. The second is focusing on work process analysis. I’m not interested in how many people will be working in a circular construction, but I’m interested in studying how the work of current builders, architects and civil engineers would change through the idea of circularity. For some of them, things will change, and for some, it won’t. For example, for architects, we have to invent new methods. Regarding its objectives, they are here to make visible the policy environment in which this reuse happens and what kind of impact it has on work processes. 

It is important to know where the material comes from. If you think of demolishing whole city blocks of obsolete buildings and when you apply the ReCreate methods or any kind of reuse to that kind of scale then you also have to include the social aspects of this reuse because you have to have in mind that people who are living in those buildings have to go somewhere. Including all of this, social acceptability is important in the scalability of reuse because there has to be enough social support for this kind of urban renewal program.

What specific stakeholders are involved in the examination of legal possibilities and barriers at the EU, national, and local levels for the reuse of precast concrete components?

Our second deliverable in this Work Package answers this question, but it is not public yet. There is a lot of EU legislation on this and there are many directives which are involved. For example, the revision of the waste directive is now translated into National legislation and it will become active in 2028 or later. As this project ends in 2025 it won’t apply to us in that sense so at this moment we depend on National legislation. In the second deliverable, we have an overview of the valid norms for our four countries. It includes information on building permits, environmental law, work safety, waste issues and that kind of material standards (what kind of material should be used). 

At the local level, you have many different stakeholders in the legal policy environment and they vary a lot between our countries. That is because you have, on one hand- administrative rules, and on the other- responsibility for supervising construction safety.

How does the evaluation of social acceptability differ for the stakeholders involved in the circular value chain, including the impact on work and employment for the company stakeholders?

The social acceptability for stakeholders begins with profitability. For example, in Germany, there is quite a lot of experience with reusing concrete elements for various purposes. There are traditional DDR styles, big houses, but people are leaving because there’s a lot of free housing or empty housing- houses are too big. The solution was to cut off the top floors of this DDR building and make what was left into more modern and smaller housing units. Instead of crushing all the concrete and putting it on the roads or using it somewhere else, they use the elements to build new houses. 

Do you think that the part of Germany will be revitalized in a sense and that it will result in it being more desirable for people to move back there?

That is the idea. These new buildings are more desirable to live in. It seems that not a lot of people want to live in DDR flats anymore. If you look at reuse, especially in social acceptability, then the German case is specific on the topic of social acceptability because there is the former Eastern Germany and the migration away from there which causes an oversupply of housing. Finland has also noticed a kind of migration from small rural cities to the south of Finland or cities that have universities, but currently, it is not nearly at the scale of Germany. In the Netherlands, there are 50s and 60s housing estates which are not so desirable. The problem in the Netherlands is that there is not enough space. In terms of migration into the cities, there is an opposite tendency.

What are the key legal possibilities and barriers that need to be assessed concerning the reuse of precast concrete components throughout the circular value chain?

The key problem is, if you deconstruct a building, then those materials should not be wasted. In the EU we have end of waste status, which in Finland and Sweden is already implemented. If you deconstruct a building then you can apply for end-of-waste status. This means that it’s not building waste, but a potential new resource. It is very important in terms of legal and policy environment because as long the element is in the building there is no problem, but as soon as you take it out then it could be potentially waste and it is not reusable. In different countries, there are different routes to get to that status and it involves, in a very early stage, construction or deconstruction project leaders who have to be in contact with authorities that approve elements. You always need aspects like the structural characteristics of building materials that are acceptable and make sure that there aren’t hazardous substances. 

Other than that, there are not so many reasons why all of a sudden the same material should change its legal status from when it’s in a building or out of a building. Building materials should always be safe and good to use, if they don’t meet the standards then you shouldn’t use them. Authorities are not entirely sure how this works and what kind of test of building material it should require. This is what we do in ReCreate.

To get the national authorities to implement these practices that we are developing for the project, would it be easier to go and advocate this directly to the European Union, which would then modify the legislation and then send it to national legislation, or it is better and quicker to advocate it directly to National authorities?

Construction project regulation includes many of these things and it is such a document that National authorities have to refer to. Also, you have Eurocodes and similar industry norms. They have a national implementation, for example, climate. In Finland, you have higher snow load criteria than in Italy. It is not so much a lack of legislation, but more a question of what information the authority accepts and what information the authority requests. It is not only the skills of architects and engineers, but we also have to talk about the building inspectors who can check the building permit applications. 

How does this WP aim to systematically assess the social acceptability of the reuse of precast concrete components for the relevant stakeholders, particularly considering work and employment aspects?

That depends on the national circumstances. We are interested in the companies involved. Concrete-producing companies are involved in the project. In the Netherlands, there is a concrete agreement (kind of a sectoral agreement) on how to reach the emissions goals for that specific sector. At that level, I would say that they don’t have much interest in reuse because these other waste to reduce emissions are much closer to their normal production processes. This means if they can innovate, they can jump on the circularity train. Reuse, as we do in ReCreate, may be difficult for them because they’re standard way of doing business may be completely rethought.

Do you think that the market can add additional value to their business by buying older buildings (that no one wants to live in) for cheap prices and then selling these precast concrete elements for companies that want to use them?

That is one potential direction which is quite close to what the Dutch company is doing. The benefit of these concrete production companies is that they have so much information about their product, as well as all the equipment they need. I could envision that in the future these concrete production companies become kind of knowledge-producing, because in the processes that we have in ReCreate (and hopefully soon elsewhere) everything in the end turns on the availability of information because all the parties involved in the value chain need information. It’s still a bit unclear what exactly is the information needed at which stage. On the other hand, concrete produces can relatively easily produce all this information that is needed about the concrete elements. In that sense, I could imagine that if they start to move in that direction, instead of making concrete they could make digital twins of these older elements which have loads of information about them.

Do you have some intrinsic motivation for the ReCreate project and what motivates you to work on it? Do you think that we will achieve our climate goals by 2050?

I’m a bit pessimistic. I see a lot of potential here in this project. It is important that we can show all the methods, the materials and all the emissions impact of these pilots vs. normal buildings. But, if you want to make a difference you have to consider vast amounts of construction. For example, in the Rotterdam case, one consultancy firm used the kind of historical BIM model to estimate the amount of material that would be freed up from all the plant deconstructions in Rotterdam until 2030. Then you can make a big difference. The problem is, when you consider that kind of scale, you run into social issues. Calculations on paper are fine, but the point then becomes extremely political in the sense that someone has to decide what these materials are used for. That is a difficult problem because you have the municipality which has housing policies and interests on how much of what should be built; you have housing corporations which want to make money. In the Dutch case you can’t make much money with social housing, so technically or financially speaking they would probably build other than social housing except they are bound to build mostly social housing. For people who are living or want to live in the city, you have this kind of vague political pressure on what the housing market should look like, but there isn’t a right answer to that because it depends on which actor you are. Here you run into a political economy issue that, at best, is a compromise between different interests. In that way, I’m pessimistic because I see technical possibilities of these methods, but socially and politically is much more difficult than we may acknowledge.

Do you have anything else that you want people who read our website to know about your work package or yourself?

I think it’s very positive that also authorities are very pragmatic and they see that there is a connection between these abstract climate agreements and what they do. I always like to say that implementing circular construction is something which happens at the local level because in the end it is municipalities which sign off the building permits and they have local climate plans and housing plans for new and old areas. Even though we have great national and international plans and agreements, I think that important work is done at the local level by all the firms involved, civil servants and other authorities involved. It is important to remember that climate policy is not something that is somewhere out there, but it is really involved in local decision-making. 

I: To top it off – who is Paul Jonker–Hoffrén when he’s not working on the ReCreate project and when he’s not working at the University?

P: I’m interested in football. We have a summer cottage which I maintain. One of my main interests, apart from work, is music. When I have a free moment I listen to music. I used to play guitar and bass, but I switched to modular synthesis.

In summary, the interview with Paul Jonker-Hoffrén offers valuable insights into the intersection of policy, social acceptability, and circularity in construction. Through his expertise, we gain a deeper understanding of the challenges and opportunities inherent in the ReCreate project. Paul’s discussion highlights the importance of navigating legal frameworks, engaging stakeholders, and addressing social concerns to foster sustainable practices in the construction industry. His remarks emphasize the significance of local decision-making in driving meaningful change and advancing climate goals.


March 15, 2024
Inari-Weijo-Ramboll.png

Inari Weijo, business development manager (refurbishment), Ramboll Finland

During my master’s thesis work over 15 years ago, I familiarised myself with precast production and its history in Finland. After that, precast concrete has been playing a role in one way or another in my work career. Many projects have involved either repairing precast concrete buildings or building new ones. Since the 1970’s, precast concrete production has formed a significant part of the Finnish construction sector. The systematic and ‘simple’ method provided a standardized way to build, and it quickly became very widespread. The precast concrete system has been criticized for producing a unified stock of buildings, reducing versatility in urban environment and suppressing designers’ creativity. Since the early days, though, the technique spread to erecting ever more complex and monumental buildings. It has been foundational for providing a fast and trusted way for building construction in Finland. There are thousands and thousands of precast concrete buildings here, and some of them are already slated for demolition. A part of the buildings suffers from degradation, but many are just mislocated from today’s point of view.

Figure 1. Finnish deconstruction pilot in Tampere, building vacated before the deconstruction of elements for reuse.

I believe that technical know-how is essential for creativity and enables responsible and sustainable construction. We must be more aware of our decisions’ environmental impacts when building new. Architects’ and engineers’ creativity is ever more challenged as we must prioritize sustainability values. Knowing the technical limitations and possibilities is crucial, so that creativity can be unleashed in the right place at the right time, and adverse uncertainties can be eliminated. Building new is inevitable in the future too, but we need to redefine ‘new’. We must apply regenerative thinking, create net positive solutions and aim for more ambitious circularity. The actions we undertake should have a positive impact on nature and the environment so that instead of consuming it, they restore and revive it. This is a leading value for Ramboll.

Figure 2. Regenerative approach to construction. Image source: Ramboll.

The prevalence of precast technology and the aim for a regenerative effect on environment are two leading thoughts that that drive our ambition here at Ramboll to examine and challenge the present business as usual in the construction sector. The headline’s statement inspires me and my colleagues at Ramboll Finland when we seek to find alternative ways to utilize what already exists. The built environment is a bank of building parts that has technically perfectly fine components stocked in it, preserved intact inside buildings. Only processes and systems to utilize them effectively are needed. I sometimes face people itemising reasons and obstacles why reusing building parts is way too difficult. I believe this pessimistic attitude may well up from the insecurity that follows from the building sector changing dramatically. There may also be a disbelief whether the huge leap, which is necessary, can be taken. Some of the items that the sceptics list are well known, some are relevant, and some are just fictional. We need to keep solving them one by one, showcasing with real-life projects that this is possible and acquire more experience to narrow down the gaping hole between the ‘old’ and the ‘new’ way of building.

An important milestone has been reached when the Finnish cluster finished the deconstruction of the pilot building in Tampere this autumn. We succeeded to reclaim several hundred hollow-core slabs, columns and beams intact, ready for use on next building site. It’s been encouraging to gain good test results, both before deconstruction, through a condition investigation, and after deconstruction, as some of the deconstructed elements have been load tested. All has been well from an engineer’s perspective! Now, the reclaimed building parts are being fitted into prospective new building projects. The search for the new building site has not been stalled because of any technical issues but rather by the currently poor market situation.

That final issue to solve – an important one indeed – is the business model that can support reuse. A circular business needs more collaboration among all the players in the field. Technically we are ready to say ‘yes’ to reusing precast concrete elements!

Figure 3. Reclaimed hollow-core slab, deconstructed from the donor building in Tampere.


February 28, 2024
Jose-Hernandez-Vargas_ReCreate-blogpost.png

José Hernández Vargas

Architect and PhD student at KTH Royal Institute of Technology

A precondition for reusing precast elements is a correct understanding of the underlying logic of different building systems and the structural interactions between concrete elements. The analysis of existing precast systems starts with a thorough examination across multiple scales, as building layouts, individual elements and their connections are interdependent.

During ReCreate, several precast concrete systems have been identified and studied. While specific pre-demolition auditing and quality control are critical steps towards reusing concrete elements, this ordering of precast elements operates at an earlier and more abstract level, providing a knowledge base for known precast systems that may apply to multiple instances. This task attempts to provide an overview and develop guidelines for the further classification and digitalisation of precast elements as potential material for reuse. Moreover, the information gathered can serve as methodological guidelines for other systems that may differ from the studied cases but follow the same core principles.

When examining technical drawings from historical precast systems it is important to identify patterns that reveal the systematic ordering of the elements. This initial step involves identifying the underlying measurement system from the axes of the building, from which standard layouts can be inferred in discrete modules. Strict repetition patterns can often be found, especially in residential buildings, where building blocks are constituted by the repetition of a building module defined by a staircase. Similarly, this building module can be divided into residential units corresponding to the individual flats on each floor. Each unit defines in turn a defined arrangement of precast elements that can be precisely estimated for each building.

Thus, architectural and structural knowledge of precast buildings is essential for accurately estimating the building stock and potential for reuse of precast buildings. Given the economies of scale involved in this kind of building, the goal of this step is to build a knowledge base to establish workflows for the ordering and analysis of potential donor buildings for reuse.

Building scale

At the building scale, the analysis centres on the identification and classification of precast structures by structural principles and different building types. Precast buildings can be found in all sorts of applications. Yet, despite the wide range of structural solutions they predominantly follow a limited set of basic structural systems. The most prevalent structural frameworks for precast concrete include the portal-frame, skeletal structures, and wall-frame structures. Structural systems for arranging precast structural systems are closely linked to the building types they serve, responding to the intended program’s requirements. For example, portal-frame structures are most suitable for industrial buildings that require large open spaces. Conversely, for residential buildings wall-frame structures are more often the most cost-effective solution as load-bearing walls also separate living spaces. Beyond buildings completely built out of precast components, specialised subsystems can be found for facades, floors and roofs in combination with other structural systems.

System Skarne 66 (Sweden) and their main structural components form the original technical drawings (left) and as a digital 3D model (right)

Component scale

At the scale of individual precast elements, the foremost classification derives from grouping them by their structural role in the structure, i.e., as walls, columns, slabs, roofs, beams, foundations, and stairs that constitute the structure of the building. These categories are based on the Industry Foundation Classes (IFC) Standard (ISO16739-1), which provides a consistent framework for describing elements within the construction industry. These groups can be understood and modelled as variations of the same parametric object, akin to a family of building components. This process is key for building a comprehensive database of precast elements contained in each building.

To further understand the arrangement of elements that constitute a system, the overall dimensions of each element can be plotted to reveal the dispersion of distinct types within the system. In this example, all the elements are aligned in Cartesian space to define the largest dimension on each axis. This method allows the creation of a ‘fingerprint’ of each building, that shows a concise overview of the dispersion of element types and the individual quantities involved. Alignments resulting from common features such as floor heights and standard modules, can also be observed.

Comparison of the ‘fingerprint’ tool showing the types of elements used in System Skarne 66 (Sweden) and BES (Finland). Dot size indicates the number of elements of each type whereas colour corresponds to the main component categories.

Connector scale

At the connector scale, the different relationships between concrete elements can be related to force transfers and security features to ensure the correct and reliable transmission of forces. Connectors are key to ensuring structural integrity by managing structural loads while accommodating additional stresses and strains that arise from thermal movements, residual loads, seismic loads, and fire exposure, among others. A key aspect for evaluating the connectors is the assessment of the alternatives for disassembly and possibly reusing the connector. Analysing precast buildings at the connector scale allows the identification of the compatibility of precast elements across multiple systems from the analysis and comparison of structural details.

Ordering precast systems across these three scales provides a comprehensive picture of how precast systems are conceived, manufactured, and assembled. This knowledge is instrumental for understanding the possibilities that these elements offer for the next building lifecycle. This ordering will serve as the basis for classifying different precast systems into taxonomies and for the digitalisation of existing precast stocks as material for reuse in future projects.


January 31, 2024
ReCreate-blog-post.png

Toni Tuomola, District Manager, Skanska (Finland)

Skanska’s role in ReCreate is strongly linked to its goal of building a better society. Being climate-smart – one of our sustainability themes – supports the achievement of this goal. Within the ReCreate project, we are studying how to produce low-carbon solutions through our business operations. ReCreate will provide us with information on how the circular economy of building elements could be promoted in the future – for example, in the planning phases of construction projects. We can have a major influence over the carbon footprint of a project’s outcome, especially in in-house development projects and, above all, in projects where we are responsible for the design.

ReCreate’s Finnish deconstruction pilot site is a 1980s office building in the city of Tampere. The precast concrete frame has been dismantled using a new technique developed and studied as part of the project. Construction projects are complex entities that demand close cooperation to meet targets. We have already worked with the ReCreate project partners for a couple of years on studies and advance preparations to facilitate the practical deconstruction work. Thanks to the studies, we were capable of dismantling the precast concrete elements intact for reuse. We also know how to verify the properties of reusable elements reliably and cost-effectively.

The possibility of technical implementation alone is not enough

 

Creating a business ecosystem for reusing building elements is an important part of the project. Reuse requires off-site production plants for factory refurbishment and the creation of an entire logistics chain and information management process to put the elements to use again. A marketplace is also needed to bring product providers and users together. Barriers must be lowered in building regulations and practices, and operating models must be harmonized.

What are the implications if reuse is successful? Firstly, the environmental benefits will be significant because the carbon footprint of reused concrete elements is about 95% smaller than that of corresponding new elements. Therefore, it will be possible to realize a substantial decrease in the carbon footprint of new buildings. Reused elements may not necessarily be used to construct entire buildings, but they would be utilized in the most suitable places. This would ensure that the dimensional and strength properties of reused elements can be used to the best effect.

The reduction in the carbon footprint helps us to meet the low-carbon requirements that will be introduced through regulation in the future. Environmental certification programs such as LEED and BREEAM also award extra points for reusing building materials.

Decommissioning a building by deconstructing elements is slower and more expensive than conventional destructive demolition. However, prior international research has found that a reused element can be as little as 30% of the price of a new element. This is an important perspective for projects researching business opportunities based on the circular economy.

A climate-neutral society is the sum of many parts, large and small. The circular economy of precast concrete elements is one factor among many. We need all the parts to work together to reach this goal.


December 13, 2023
Christoph-Henschel-BTU-Reusing-precast-concrete-elements-challenges.png

Christoph Henschel, BTU

In conventional architectural projects, the use of the building and the design concept typically determine the dimensions of the structure. This means that the height of spaces, as well as the width and length of rooms, are defined by what will happen in them once they are built. Constraints on the size of a building are usually only imposed by limited budgets, the site and its context, or zoning laws. All of this changes drastically when reused precast concrete comes into play. Suddenly, the structure dictates the spatial dimensions, the grid size or the floor heights of the building design. This changes the design task for the architect and presents new challenges. In order to show that these challenges are also full of opportunities, the following text describes the design process for the German pilot project within the ReCreate project, a youth center for the town of Hohenmölsen.

The design task began with a detailed analysis of the elements that could be salvaged from the donor building. Specific types, dimensions and available quantities of exterior and interior walls and ceiling slabs were determined. Preliminary tests of the concrete strength and examination of the reinforcement properties ensured the suitability for reuse in advance. With this catalogue of elements as a starting point, the design process for the new building could begin – always with the goal of using as many reused elements and as little new material as possible.

Resource: BTU Cottbus Senftenberg

The mayor of Hohenmölsen drew up a rough room plan that served as the basis for the initial design. It included a multi-purpose room, a kitchen and dining hall, several smaller rooms for offices or after-school use, and some additional rooms such as restrooms, storage, and a technical room. With these requirements in mind, an initial building layout sketch was created with the goal of locating the various uses in customizable areas of the future building. Conditions such as the distance from the entrance, the proximity of certain rooms to each other, or the orientation to the east, west, or south to ensure the best lighting were taken into account.

This initial sketch was then superimposed on a grid of 2.4m by 3.6m – the maximum length of the ceiling slabs in the donor building. After a few attempts and several iterations of rotating certain rows in the grid by 90°, two initial building designs were created and presented to the town of Hohenmölsen.

Resource: BTU Cottbus Senftenberg

A special design decision was to use the former exterior walls not only as exterior walls but also as interior walls in the new building to show that the building was created from reused elements. This also allowed for interior windows between two rooms, which was an interesting way to visually connect separate rooms.

Resource: BTU Cottbus Senftenberg

The two initial building designs were presented by BTU at the town hall of Hohenmölsen and then discussed by the mayor with the town representatives. As a result of this discussion, BTU was asked to make a number of changes to the design in terms of size and use. This second design phase resulted in a combination of the two previous designs into one more detailed approach. In this design, it was already apparent that for the larger spaces, such as the dining room and multi-purpose room, the 3.6m ceiling spans were not sufficient, so new beams and columns were introduced to create wider spaces with double the span, resulting in a width of 7.2m. At this point, the method of showing reused elements in black lines and new material in red on the drawings was established. This allowed for a quicker overview of where reused elements would be located.

Resource: BTU Cottbus Senftenberg

During this design phase, the concept of multiple entrances to the building was developed, so that there is not just one main entrance, but several ways to approach the building, which can activate the building’s surroundings much better.

After another round of feedback from the town of Hohenmölsen, some minor changes were made and terrace roofs were added to the design. In this design, it is now possible to enter and exit the building from all four sides. This allows users to access the site from all sides. In this design, 47 used exterior walls, 7 used interior walls and 56 ceiling slabs are used.

Resource: BTU Cottbus Senftenberg

Some time passed and the town of Hohenmölsen contacted BTU again, stating that the original space plan was not sufficient and that more space was needed. With the experience from the previous designs, a new layout was developed. The new design introduced the idea of a functional block with all building services such as kitchen, toilets, storage, etc., to be placed in the center of the building. This allows all the other rooms where youth activities or office work will take place to receive natural light.

Resource: BTU Cottbus Senftenberg

The downside of this design was that it had a huge footprint of almost 700 m2 due to the increased space requirements. This led to the idea of arranging the spaces on two levels, creating a two-story building. The previous spatial configuration of a service core with a surrounding corridor and entrances on all four sides of the site was retained. Due to the peculiarities of the reused concrete elements and the limited grid size, it was decided that the upper floor would be accessed only by an exterior staircase to simplify the construction and avoid potential fire safety concerns.

Resource: BTU Cottbus Senftenberg

In this final design, 35 exterior walls, 25 interior walls and 103 floor slabs from the donor building will be reused, resulting in a net floor area of 505 m2 on the ground floor and 263 m2 on the upper floor. The new structural elements are initially planned to be new precast concrete elements such as columns and beams. New exterior and interior walls will be made of wood stud walls and ecological insulation such as wood fiber boards. For the facade, the reused exterior walls can be insulated with only 6 cm of wood fiber boards due to the low density concrete they are made of, while the reused interior walls, which will be positioned as new exterior walls, will require 14 cm of insulation. The façade will be a ventilated cladding of reused wood panels and reused corrugated metal, installed as available.

All in all, the design process was challenging, but also interestingly unusual, because the building elements determined many decisions that would otherwise have to be made by the architect or the client. Introducing new elements and rotating the grid in certain places allowed for some flexibility and gave just enough freedom to realize all the required uses in the building. The German ReCreate country cluster hopes to start construction of the youth center in late 2024 or early 2025.

Resource: BTU Cottbus Senftenberg


December 8, 2023
Ahmad-Alnajjar-KTH.png

Ahmad Alnajjar, PhD student at KTH

ReCreate project is a forward-thinking initiative that explores the reuse of precast concrete elements from various angles. A key aspect of this project is evaluating the climate benefits from a life cycle perspective. Our recent work, particularly in the Swedish pilot construction, has shown promising results in reducing embodied carbon – a crucial step in sustainable and circular building practices. About 92% of embodied carbon was avoided at the building level which is largely attributed to the reuse of concrete elements, including precast concrete elements. This achievement aligns with previous research highlighting the benefits of reusing precast concrete and further emphasizes the reuse’s effectiveness in mitigating the environmental impact of construction. Unlike most previous studies, the embodied carbon evaluation of the Swedish ReCreate pilot project stands closer to real-world applicability. It is based on field experiments conducted by seasoned professionals in the building sector, adding practical validity and depth to our findings.

An important facet of our findings in the ReCreate project underscores a significant advantage in the reuse of whole precast concrete elements over traditional recycling methods. Through our comprehensive analysis, it has become evident that the embodied carbon savings achieved by reusing entire elements are considerably greater than those realized by merely crushing to recycled concrete aggregate and shredding the rebar to steel scrap. This distinction is crucial, as it highlights the substantial environmental benefits of reusing structures in their complete form. By opting for reuse over recycling, we not only retain the material’s inherent value but also significantly reduce the carbon footprint associated with the production of new building materials.

Our assessment has also brought to light interesting insights. Contrary to common concerns, we found for example that the transportation of reused elements does not significantly add to the project’s carbon footprint, as it is comparable to the transport distances of new building materials. We hope that this finding will encourage building industry actors to reconsider their material sourcing strategies, recognizing that incorporating reused elements can be both environmentally beneficial and logistically viable.

Currently, our team is focused on comprehensively understanding the future availability and demand for pre-used precast concrete elements. We are assessing both the timing of their availability and the quantities that can be effectively reused in new construction projects. By addressing these critical aspects, we aim to elucidate the role that reusing precast concrete elements can play in meeting Sweden’s and the EU’s ambitious climate goals.

Through the ReCreate project, we are exploring new avenues in construction, aiming to make a meaningful contribution to sustainable building practices. Our team is dedicated to not only implementing these innovative practices but also to rigorously documenting and analyzing our findings. Our research will soon be available in various scientific journals, providing a detailed and scholarly overview of our work and its implications for sustainable construction. Keep an eye on our progress as we delve further to uncover the potential and challenges of this innovative approach and look out for our publications to gain a deeper understanding of the impact and scope of our project.


November 13, 2023
M-Rokio.png

Matias Rokio, Tampere University – 13 November 2023

My name is Matias Rokio, and for the year 2023, I’ve been doing research in ReCreate. My background is in industrial engineering and management, and I have been studying since 2017 at Tampere University. I graduated with an M.Sc in June 2023 and wrote my Master’s thesis on resilience in Finnish health care with an emphasis on information asymmetries. My minor in sustainable production steered me towards the areas of sustainability and circular economy, which I feel should receive a lot of attention in research in varied fields. Currently, I am in the process of applying for a doctoral position at Tampere University, which I will hopefully receive sometime during this year. In my personal life, along with my work as a researcher, I am a semi-professional drummer in a few different groups and doing all kinds of session work for different artists.

Currently, I am working at Tampere University in a CROPS research group, which collaborates with ReCreate’s WP7 through my research. According to WP7 objectives, the work package aims to accelerate the development of a scalable and profitable business model for reused precast concrete components in different environments. Especially within the construction industry, the circular economy has tremendous potential in driving a transition towards more sustainable practises, as concrete manufacturing alone generates around 4-8% of the world’s CO2 emissions.

My research article on ReCreate approaches the concrete element reuse from project management’s perspective, with an aim to unveil how applying circular economy principles in projects affects the inter-organisational collaboration and value creation in the project front-end. In my research, the front-end spans the planning phase of the Finnish country pilot, where the deconstruction of an office building in Tampere city centre and the subsequent phases to it were planned in detail. The purpose of the research is to enrich the discussion around sustainable project management and showcase a project where sustainability is promoted through circular economy practises. Also, the circular economy discussion, despite its trending and important nature, is currently still lacking in the project management context, which makes the research interesting for project management scholars.

In the research, we found out that when a construction project is based on the reuse principle, the front-end phase requires more actors to collaborate in the project planning and some actors are required to take on new tasks in the project. For example, a structural engineering company was an integral part of the deconstruction planning of the building, whereas, in a conventional demolition project, the demolition company does the planning by themselves. It is also evident that there are several new business opportunities for the actors involved that could build new services and marketplaces around the reusable concrete elements and reach new customers through collaboration in the project. Currently, several barriers to the wider adoption of concrete elements reuse still remain, as manufacturing new concrete elements is relatively cheap whilst detaching, and refurbishing the old elements is somewhat time-consuming, and a regulative incentive for adopting the reuse principle is lacking.


November 10, 2023
Viktoria-Arnold_BTU_za-web.png

Viktoria Arnold, researcher at BTU Cottbus – Senftenberg, Germany

The assessment of the sustainability of buildings has been increasing rapidly in recent years. This is not only related to the international goals of the United Nations, which are set out in Agenda 2030[1] and include global ecological, economic and socio-cultural aspects in the building sector (SDG 11[2], 12[3] and 13[4]). It is also linked not only, but in large part, to the national goals of the United Nations, which each country has set for itself. Germany, for example, has set a goal of achieving greenhouse gas neutrality in its building stock by 2050[5]. Different countries have different requirement methods. Some countries have made it mandatory to submit a so-called Climate Declaration for future building during the approval phase and to comply with certain limits for greenhouse gas emissions, such as the Netherlands, Sweden and Finland. Other countries, such as Germany, subsidise climate-friendly construction and renovation measures. Some builder-owners are just interested in building sustainably and climate-friendly and want to know what design decisions, building products and materials have what impact on the environment. And what contribution the building as a whole makes to resource and climate protection during its entire life cycle. To find this out, many sustainability assessment systems for buildings are used, which have LCA (Life Cycle Assessment) as one of the most important criteria. The basis for LCA is the EPDs (Environmental Product Declarations) based on ISO 14025 and EN 15804 for the different building products and materials. The more building products and materials have an EPD, the more accurate the calculation of the environmental impact of a building. This will greatly assist the builder-owner when deciding on certain construction and architectural solutions, and what contribution the building as a whole makes to resource and climate protection throughout its complete life cycle.

I am doing my doctorate at BTU on sustainability assessment of single-family houses. For such buildings, which are nowadays a luxury from a climatic point of view, such an assessment is particularly important.

In the ReCreate project, our German Cluster is particularly responsible for work package 6 “Energy and Climate”, which aims to evaluate the environmental and economic impacts (LCA and LCC (Life Cycle Costing)) of the reuse of precast concrete elements. Our major objective is to produce one or more EPDs for the precast concrete elements (ceiling, exterior and interior wall) suitable for reuse. This will enable LCA for new buildings with the reused elements and distinguish such resource and climate-friendly projects from others. Several previous research projects led by Prof. Angelika Mettke[6] have shown that the reuse of concrete building elements can significantly reduce the carbon footprint and energy consumption in the product phase by up to 93-98% compared to new production[7].

We notice again and again in our research that reuse can only be possible if the parts are still considered in the installed condition and the careful disassembly is carried out by an experienced company in the best case. Recently, the new DIN SPEC 91484[8] has been published, which is the basis for evaluating the high-quality connection potential for building products before demolition and renovation works where Prof. Mettke has been involved. Another prerequisite for successful reuse is that the building documents are available and, if possible, up to date. This is rarely the case with existing industrially constructed buildings that are up for deconstruction. That is why today’s initiative on the building resource passport is very important, where all building materials and products used, as well as their quality and recyclability, are recorded and kept up to date. It is also important to look now at what can be used to build more sustainable buildings so that the new building can be reused later at the end of its life cycle.

I am asking all these research questions in my doctoral thesis because it is still not so far that one comes to the idea of building a single-family house from used precast concrete elements.

[1] Sustainable Development Goals

[2] SDG 11 Make cities inclusive, safe, resilient and sustainable

[3] SDG 12 Ensure sustainable consumption and production patterns

[4] SDG 13 Take urgent action to combat climate change and its impacts

[5] Deutsche Nachhaltigkeitsstrategie Weiterentwicklung 2021, p. 103

[6] Structural Recycling Unit, Faculty 2 of Environment and Natural Sciences, BTU Cottbus – Senftenberg

[7] Mettke, A. (2010). Material- und Produktrecycling – am Beispiel von Plattenbauten. Zusammenfassende Arbeit von 66 eigenen Veröffentlichungen, Cottbus, Techn. Univ., Habil.-Schr. p. 235–243

[8] DIN SPEC 91484:2023-09 “Procedures for recording building products as a basis for evaluations of connection use potential prior to demolition and renovation work.”


September 29, 2023
za-web_featured-1280x960.jpg

In the heart of Tampere, Finland, the ReCreate project’s core group recently convened for a two-day program that combined insightful discussions, presentations, and an eye-opening site visit. Hosted by the project coordinators at Tampere University, this gathering showcased the collaborative spirit and dedication of the ReCreate consortium.

Day 1: Core Group Meeting

The first day of the event was dedicated to the ReCreate project’s core group meeting. This session served as a platform for project partners to exchange ideas, review ongoing activities, assess the status of deliverables, and chart a course for future actions within the project.

Participants came together to discuss their respective areas of work, share valuable insights, and align their efforts towards the project’s overarching goal of revolutionizing construction and deconstruction practices to achieve sustainability.

Day 2: Site Visit and Presentations

On the second day, just before embarking on a site visit, ReCreate partners held a series of brief presentations. Each presentation provided a perspective on the ongoing work in Tampere:

  1. Mr. Tero Niemelä, Skanska: Skanska, specializing in construction and project development, shared their contributions to the project, shedding light on their areas of expertise and the challenges they are tackling.
  2. Ms. Inari Weijo, Ramboll: Ramboll, engaged in technical research, and delved into their work related to structural condition surveys, deconstruction techniques, quality assurance, structural design, joint techniques, and reinstallation.
  3. Mr. Antti Lanta, Umacon: Umacon, with its role in checking elements for damage and transportation logistics, provided insight into their efforts in ensuring the efficient reuse of construction elements.

Following these presentations, participants eagerly set out on a site visit to witness the ongoing deconstruction work in a donor building. The building’s skeleton frame, consisting of columns and beams, as well as hollow core slabs as intermediate floors, is being carefully disassembled. The reclaimed elements from this building will find new life in future construction projects, aligning with ReCreate’s core mission of promoting circular construction.

The ReCreate core group meeting and site visit in Tampere showcased the power of collaboration, innovation, and sustainability in the construction industry. It’s a testament to the dedication of project partners and their commitment to shaping a more sustainable future for the industry.

Stay tuned for more updates on the ReCreate project’s journey as it continues to make waves in the world of construction and deconstruction.


September 27, 2023
ReCreate-Malaga-1.png

We are thrilled to announce that the ReCreate project will be featured among other EU-funded initiatives at EU Industry Days 2023, set to take place from October 4th to 6th at the FYCMA (Trade Fairs and Congress Center of Málaga) in Spain. This event promises to be a melting pot of innovation, where industry leaders, policymakers, and experts will converge to accelerate the digitalization, sustainability, and efficiency of production models in Europe.

EU Industry Days, the European Union’s flagship annual event dedicated to industry, is making its way to Málaga. It serves as a vital platform for forging connections, fostering collaborations, and driving innovation across various industrial sectors. At the heart of this event is the mission to facilitate Europe’s transition towards a more sustainable and digitally advanced industrial ecosystem.

ReCreate is an EU-funded project committed to redefining construction through the reassembly of precast concrete elements, thus contributing to circular construction practices. By examining the entire construction and demolition ecosystem, ReCreate explores systemic changes needed to maximize the reuse of precast structural components, preserving their secondary materials at their highest value.

We invite you to visit our exhibition at EU Industry Days 2023 to learn more about the ReCreate project and witness firsthand how circular construction and sustainable practices can shape the future of our industry. Join us in Málaga as we collectively work towards a more innovative, collaborative, and sustainable industrial landscape.

Don’t miss this opportunity to be part of the transformative journey in the European industrial sector. See you at FYCMA in Málaga from October 4th to 6th!





EU FUNDING

“This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 958200”.

Follow us: